RECEIVING ANTENNAS
Receiving magnetic loop antennas were widely used in the professional radio communication from the beginning of the 20 Century. Since 1906 magnetic loop antennas were used for direction finding purposes needed for navigation of ships and planes. Later, from 20s, magnetic loop antennas were used for broadcasting reception. In the USSR in 20-40 years of the 20 Century when broadcasting was gone on LW and MW, huge loop antennas were used on Reception Broadcasting Centers (see pages 93-94 about USSRs RBC). Magnetic loop antennas worldwide were used for reception service radio stations working in VLW, LW and MW. The article writes up several designs of such old receiving loop antennas.

LW- MW Huge Receiving Loop Antennas for Broadcasting and Direction Finding

In old radio textbooks you can find description of old magnetic receiving loop antennas. As a rule, old magnetic receiving loop antennas had a triangle or square shape, a side of the triangle or square had length in 10-20 meters. The huge square was put on to a corner. The distance from the ground up to lower wires of the magnetic receiving loop usually was not less than 4 meters. Fig. 1A shows a triangular receiving loop antenna consisting of two perpendicular loops, used for direction finding at airports [1]. Fig. 1B shows a square receiving loop antenna used on Broadcasting Radio Centers of the USSR at the end of 30s of the 20 Century [15]. Usually the receiving magnetic loop contained from one up to eight turns.

Fig. 2 shows a typical connection of the above mention huge magnetic receiving loop antennas designed for working on one fixing frequency to the receiver. To a resonance the loop A1 is tuned by lengthening coil L1 (sometimes two lengthening coils switched symmetrically to both side of the loop were used) and variable air-dielectric capacitor C1. T1 did connection with antenna feedline. L1, C1 and T1, as a rule, are placed directly near the antenna keeping minimum length for wires from the antenna to the parts. Certainly, there were others circuits for connection magnetic loops to a receiver, but the circuits were insignificantly distinguished from Fig. 2.

Small- Sized Magnetic Loop of a Local Broadcasting Radio Center

Huge loop antennas were used for cities Broadcasting Radio Centers, for local Broadcasting Radio Centers a small- sized loops were used.
CHAPTER 3: RECEIVING ANTENNAS

Old Receiving Magnetic Loop Antennas

Fig. 1 Old huge magnetic receiving loop antennas

Fig. 2 Connection of the reception magnetic loop to a radio receiver

Fig. 3A shows a design of the small-sized magnetic loop, and Fig. 3B shows the electric circuit of the antenna. Design and circuit, both, were pictured by me from the real loop.

Such small-sized receiving loop I have seen in an old village Broadcasting Radio Center in Central Russia, where I was occasionally in 80s of the 20 Century. The center was built in the beginning of 50 years of the 20 Century and till now was in work practically without changes. The broadcasting center settled down in a small room on a ground floor.

This rural Broadcasting Center contained a receiver PTS (see page 93-94 about USSRs RBC) together with a small-sized loop antenna and an old tube audio amplifier, but I could not remember its type. All equipment was produced at the 50s. As I was told, the radio receiver and the audio amplifier of low frequency never were switched off from the main since the Broadcasting Center was in operation, so, the equipment were in continuous work already more than thirty years. Time to time the tubes of the receivers and amplifiers were changed, it was only that was done. Quality of work of the Broadcasting Center was great.

The most interesting part of this Broadcasting Center was a small-sized (certainly, small-sized in comparison with the antennas shown on Fig. 1) receiving magnetic loop antenna. By nameplate from the antenna I have known, that the antenna was made in 1949 on one of plants of Gorky (now Nizhniy Novgorod), Russia.

The loop antenna (item 1) had diamond shape, sides had length in 105-cm (it was measured by a roulette), the loop was attached to a wooden cross (item 2), this one was covered by light lacquer. Overall height of the magnetic loop antenna was near to 2 meters. Antenna wires were more than 1-millimeter in diameter and were covered by thick black cotton isolation, a strong thin layer of light varnish covered the isolation.

The loop contained about 20 turns of the wire. The turns were rigidly settled down in trenches of plates (item 3), the plates were probably made of an ebonite. The distance between turns on the plates was equal to the diameter of the wire. The loop antenna was coupled to a receiver through a coupling loop (item 4) that contained 4 turns. The coupling loop was connected to a receiver through a feedline (item 5). The feedline has length near 3 meters and looks like a main wire.

A small wooden box (item 6) was in the bottom of the loop. A big three-section (each section has 12-500-pF) variable capacitor with vernier intended for tuning the loop to a resonance was in the box. Also there were taps switch S1 and two trap (L1C2 and L2C3) tuning to hindered broadcasting radio stations. The trap is

http://www.antentop.bel.ru/ mirror: www.antentop.boom.ru

Page 3-2
CHAPTER 3: RECEIVING ANTENNAS

Old Receiving Magnetic Loop Antennas

switched to the feedline instead of crosspieces between clamping contacts K1K2 and K4K5. These contacts were established inside the box. Feedline contacts K3K6 were installed at a cheek of the box.

However small-sized magnetic loop antennas were used not only to Broadcasting Radio Centers. Earlier, in 30-50 years of the 20 Century such antennas frequently installed inside broadcasting receivers. Some designs of the inner loop antennas are shown below.

Basket Magnetic Loop Antenna

Receiving basket loop antennas were widely used for work with LW and MW receivers of direct amplification since of the end of 20s of the 20 Century. As a matter of fact, basket loop antennas are ones of the first types of magnetic loop antennas used by radio amateurs. Basket loop antennas were used both as to stationary receivers as to so called “suitcase receivers”, i.e. tube receivers made inside a suitcase and intended to a movable work. Old radio magazines of 30-50s of the last century contained hundreds designs of basket loop antennas.

Basket loop antennas were earlier so popular because, in the first, ever a radio amateur having a minimal experience of designing easily can make this one, in the second, a basket loop antenna can be made of any improvised material, and in the third, a basket loop antenna made even in home conditions works very effectively. The essence of the design of a basket loop antenna is that at its winding the step between turns is constant and equal to the diameter of the used wire (practically this step even bit more).

A coil, which has been reeled - up with such step, has rather small own parasitic capacity of turns to each other. It is possible to show, that the more parasitic own capacity of a coil is the less its Q is (see, for example, reference [3]). So, at a small own capacity a loop has high Q.

There are several basic points to pay attention at design of a basket loop antenna. A basket loop antenna can be reeled up on a plate from any dielectric stuff having small losses on frequencies where the antenna works. A basket loop antenna of LW- MW ranges can be made of a cardboard, wooden plate, PC- board, getinaks or ebonite. Pay attention, that some grey cardboard made of so-called “not washed” recycling paper (a paper that is not washed off typographical paint) can have a big losses at LW- MW ranges, at least, in a microwave this cardboard is strongly heated up. Certainly, do not use the grey cardboard for a form of a basket loop antenna. Odd number slots are made in this dielectric plate, the more slots are done, the winding has more density Number of turns and sizes of an antenna form are depended on frequencies range used.

CHAPTER 3: RECEIVING ANTENNAS

Old Receiving Magnetic Loop Antennas

Figure 3 Small-sized receiving loop of a rural Broadcasting Radio Center

Basket Loop Antenna of a Simple Tube Receiver of Direct Amplification

Fig. 4 shows the circuit and design of a basket loop antenna intended for use in a simple threetubes regenerative receiver for LW- MW. The receiver was described in the reference [5]. For design of the antenna a disk made of a cardboard or plywoods is used. The disk has diameter in 120 millimeters and the thickness in 3 millimeters. Five slots of 45 millimeters in the length of and 2-3 millimeters in width are done on the disk at equal distance one after the other. A special ledge for fastening the loop antenna is made on the disk. Magnetic loop antenna contained 250 turns of an insulated copper wire in diameter of 0,15-0,25 millimeters. Beginning of the reeling is up of the centre of the disk.

Taps are tapped from the loop for tuning the loop to a resonance. Taps are made from 50, 100, 150 and 200 turns. When you doing the taps, do not break off antenna wire, wind wire

Figure 4 Magnetic basket loop antenna of a regenerative receiver of LW- MW
CHAPTER 3: RECEIVING ANTENNAS

Old Receiving Magnetic Loop Antennas

into a loop in length approximately 200 millimeters, then continue winding.

Basket Loop Antenna of a Simple Suitcase Tube Superheterodyne

Fig. 5 shows a basket loop antenna of a superheterodyne receiver of LW- MW made in a suitcase. The receiver was described in the reference [5]. The basket magnetic loop antenna is placed on a cover of a suitcase in which the receiver is placed. More slots - more density of winding of the loop.

The first section of the antenna contains 29 turns, it is winded by a Litz wire 10x0,07 (10 wire in diameter of 0,07 millimeters), as a last resort, this winding can be made by a wire of 0,4-0,5 millimeters in diameter. The first section starts to reel up from the internal part of the form. The second section of the antenna continues winding the first section, it is winded by a copper insulated wire of 0,2 millimeters in diameter and contains 70 coils. When the antenna works at MW the first section is shortened. At LW both section of the loop antenna are in work.

Figure 5 Magnetic basket loop antenna of a superheterodyne receiver of LW- MW

Certainly, not only basket loop antennas were used in old receivers. Simple loop antennas were widely used also. A simple superheterodyne LW- MW receiver made in

Figure 6 Magnetic loop antenna of a superheterodyne receiver of LW- MW
CHAPTER 3: RECEIVING ANTENNAS

Old Receiving Magnetic Loop Antennas

A suitcase and using a loop magnet antenna is described in the reference [5]. Fig. 6 shows the circuit and design of the loop antenna. It was used two magnetic loop antennas, M1 and M2. Lengthening coils are switched in serial with each loop antenna (L1 to M1 and L2 to M2), necessary for exact tuning of the loops to frequencies range needed. Both, M1 and M2 are used at LW. When the loop works at MW, M2 is shortened, and only M1 does receiving.

Magnetic antennas M1 and M2 have sizes 315x245 millimeters, M1 contains 14 turns of Litz wire 30x0,06, M2 contains 50 turns of Litz wire 15x0,05. As a last resort, instead of a Litz it is possible to use a copper insulated wire in diameter of 0,15 millimeters.

Lengthening inductor L1 contains 50 turns, lengthening inductor L2 contains 125 turns, the wire is Litz 15x0,05. These inductors are reeled on a form in diameter of 8 millimeters. The width of winding is 7 millimeters for both inductors.

Short Wave Magnetic Loop Antenna

Magnetic loop antennas were used not only for LW and MW, also the antennas were used for SW. For example, in the reference [5] it was described a SW magnetic loop antenna which was used for 19-75 meters. The loop antenna was simultaneously the input circuit of the receiver. A variable capacitor 12x500-pF does tuning to a resonance of the loop. Fig. 7 shows design of the antenna.

The antenna is made of a copper strip 6x3 (width in 6 millimeters, thickness in 3 millimeters). Such strip is used for winding welding transformers. The loop antenna contains 2 turns, the distance between the turns is 10 millimeters, inductance of the magnetic loop is 3,1-µH.

References:
ATU
What an ATU does?

You should not think that an Antenna Tuning Unit (ATU) is a magic thing to do any antenna work well with your transceiver. At installation between the transmitter and feeder the ATU only does matching of output impedance of your transmitter with input impedance of your antenna - feeder system. It means that ATU allows to the transmitter with output of 50 Ohm to work normally with antenna plus feeder having any input impedance. But probably SWR would be enough high in the feeder. If the ATU is installed between antenna and feeder it does low SWR in feeder and provides good operation for the transmitter. But probably the antenna would work not in good way.

So, an ATU provides safe operation for transmitters end stage, if the ATU is between the transmitter and the feeder, additionally an ATU does low SWR in feeder, if the ATU is installed between antenna and feeder.

As usual modern transceivers and military equipment have inner ATU that does matching end stage with feeder or antenna. Below we take close look to ATU design.

ATU Design

Fig. 1 shows schematic of a “classical” ATU. Such ATU has:

- a Matching Unit, that provides the matching of end stage of the transmitter with antenna - feeder system. Matching Unit is the “heart” of any ATU;
- A SWR meter or HF-bridge, that shows how the matching is done;

![ATU Diagram](image-url)
CHAPTER 4: ATU

- Dummy loads R1, R2 and R3, that help us to monitor how Matching Unit and SWR – meter (HF-bridge) do work:
- S1 and S2 for proper connection of the above mentioned parts;
- J1 and J2 for transmitter and antenna connection.

So, how the ATU does work?

S1 at “Bypass” position does connection of the transmitter to S2. S2 does connection or to antenna, or to Dummy Loads R2 (50 Ohms) or R3 (600 Ohms). So, at good 50-Ohms antenna the transmitter works straight on the antenna, also is possibility to load the transmitter on 50-Ohms Dummy Load for a tuning of the transmitter or checking of the SWR- meter.

S1 at “Tune” position does connection of the transmitter through inner HF-bridge and Matching Unit to S2. So, it is possible to tune the Matching Unit or on to real antenna (S2 in position Ant) or check how the Matching Unit can tune to 50-Ohms (S2 in position Load 1) or 600-Ohms (S2 in position Load 2) load. When you have your antenna tuned, switch S1 in position “Operate” and just work in the ether.

You can see, it is possible to use or SWR- meter or HF-bridge for tuning the MU on to real load.

As it is visible from this scheme the degree of the matching of the transmitter with used antenna depends only on used Matching Unit. Let’s see what our Matching Unit can contain.

Classical Matching Unit

One of most effective Matching Units is shown on Fig. 2. This scheme was widely used by the radio amateurs from early 30s till recently days. As it is visible from Fig. 2, the end stage of the transmitter is connected through coupling coil L1 and coupling capacitor C1. L2 and C2 is tuned to resonance to input signal. C3 does coupling with the load (antenna).

As usual, L1 has from ¼ to 1/6 from amount of turns of L2. L1 is wound in lower part of L2. L1 should be unbound from L2 by any qualitative isolation. In some designs of the MU, L1 is isolated by means of air. The transmitter is coupled to the antenna only by magnetic field, so the end stage of the transmitter is protected from a lightning. Resonance circuit kills harmonics. The Classical Matching Unit does well match a load from 10 to 1000 Ohms with end stage of transmitter in 50 or 75-Ohm impedance.

C1 should have maximum of capacity up to 1500-pF at operation through 1,8- 28 MHz, and 500-pF would be enough for operation through 3,5- 28 MHz. If L1 has optimal number of turns the C1 is not necessary at all. C2 and C3 should have the greatest possible clearance between their plates.

At constant parameters of L1 and L2 the Classical Matching Unit works with high efficiency only in two multiple amateur HF - ranges, for example, 1,8 and 3,5 MHz, 7 and 14 MHz and so on. At others ranges efficiency is dropped. Old Classical Matching Unit had plug-in coils for all amateur range for keeping the efficiency at high level. L2 should be placed as far as possible from metal walls of the cabinet of the ATU.

To tune the MU is very simple. At first, C1 has the maximum capacity, C2 and C3 have minimum capacity. Then, with help of C2 do tune resonance circuit L2C2 in the resonance to working frequency, then C3 does optima matching with the antenna. After that once more time do tuning C2 and C1. It is necessary to say, that after final tuning of the MU C3 has to have the greatest capacity as it is possible.

Advantages of the MU are following. It does not require too careful manufacture of L1 and L2. The system ensures high efficiency, up to 80 percents. Tuning is done with two capacitors C2 and C3. The lacks are that for high efficiency in the matching unit it is necessary to use one spool to two multiple ranges, and one variable capacitor insulated from case of an ATU.

Classical Matching Unit with a symmetrical output

Recently symmetrical antennas with a symmetrical feeder are applied seldom, but some decades ago it was a usual matter. Classical Matching Unit with symmetrical output is shown on Fig. 3. In scheme shown in Fig. 3 a RF- voltage for antenna - feeder system is removed symmetrically from both ends of L2, and it is only difference from the scheme shown in Fig. 2. In practical design L1 should be disposed symmetrically concerning resonance spool L2. Twins capacitors C2.1 and C2.2 should have one axe. It is as well as to C3.1 and C3.2.
CHAPTER 4: ATU

Something about ATU

Classical Matching Unit with taps

You can see that C3 is isolated from metal cabinet of the ATU. It is not convenient for practical design of an ATU, so amateurs often use Classical Matching Unit with taps.

Multi-range Matching Unit with taps

So, if you want to build an ATU having minimum sizes and parts try the schematic shown in Fig. 6. However, the Matching Unit has not high efficiency at upper amateur ranges because of lowering of the Q-factor of L2 and because of not optimal selection of taps from L2. But usage of such simplified multi-range Matching Unit at amateur HF - ranges 1,8-10-MHz is quite acceptable.

T - Matching Unit

Classical Matching Unit is very effective in the work. However, among radio amateurs and military T-Matching Unit has more popularity then one shown in Fig. 2. It takes place because T- Matching Unit have high efficiency at very wide frequency ranges and T-Matching Unit allows to do easy automatic tuning (that very likely to the military!). Also, T- Matching Unit works very well with for asymmetrical coaxial cables feeding modern antennas. Fig. 7 shows schematic of T- Matching Unit. The MU has rather good parameters. It is possible to do matching a 50–Ohms transmitter to 10- 1000-Ohms antenna. It is possible overlap all HF- amateur bands from 3,5 up to 30 MHz using only one variable inductor at 0.5-30- µH and two variable capacitor at 10- 250-pF. The MU does matching at 1.8-MHz if to bridge C1 and C2 to connect fixed capacitors at 200-pF.
CHAPTER 4: ATU

Something about ATU

The "cold" end of L1 should be grounded or isolated carefully from the metal case of ATU. Otherwise you probably will have strong arc between the ungrounded end of L1 and a wall of the ATU, as it is shown in Fig. 8. C1 and C1 should be very qualitative with aerial or vacuum dielectric. The clearance between plates of capacitors should be not less than 2-mm/ to 200-W bypass power. Stray capacitance of C1 and C2 to the metal case of ATU should be no more than 25-pF, otherwise the efficiency at 24-28-MHz drop.

Figure 8 Arcing inductor

If you want to connect symmetrical antennas feeding through symmetrical ladder lines to the T-Matching Unit, use symmetrical transformer 1:4 or 1:6. BTW, many of symmetrical antennas, feeding through ladder lines have large reactive component, which bad to transformation by simple transformers 1:4 or 1:6. The T-Matching Unit suppress harmonics up to 10-15 dB.

Figure 9

T - Matching Unit with a "digital" inductor

L1 has to have slide contact to operate the MU in proper way. Sometimes, even extra half of a turn influences to the matching. It restricts usage of an inductor with taps, or demands personal selection taps for real antenna, that certainly, restricts possibilities "tap" MU. Simple decision on this problem by W3TS made, he offered a "digital" inductor that Fig. 9 shows. Really, it is possible with the help of several switches very fine to tune needed inductance. Electronic relays with special chips allow realize automatic ATU. Military also use the method at their automatic ATU.

T - Matching Unit with mirror parts

For practical design of any ATU it is not conveniently to have two capacitors insulated from the ground. AEA corporation (USA) does the MU as Fig. 10 shows. You can see that they changed C to L. Really, schemes of MU figured in Fig. 7 and Fig. 10 are equivalent.
CHAPTER 4: ATU

Something about ATU

But scheme in Fig. 10 has advantages. At first, it is much easier to use only one grounded high-quality capacitor instead of two ones but insulated from metal cabinet. Secondly, it is wise to substitute expensive inductor with slide control to two cheapie spools with taps.

The MU made by me at home conditions worked well on all amateur ranges from 1,8 up to 30 MHz and did matching to 50-Ohms transmitter to antenna with resistance from 15 up to 500-Ohms.

The inductors were made as Fig. 11 shows. Form of inductors is made of PC – board with slots for turns. On the plate switch for taps is installed. The plate is disposed not in center of the inductor but little sideways as Fig. 12 shows.

Pi- Matching Unit

Pi - MU is used in radio amateur practice for a long time. It is possible to find Pi - MU and disputes on this subject at radio amateur journals issued on 20s of the 20 century till our time in the Internet. Fig. 13 shows Pi- MU. As usual Pi – MU is used at inner MU at tube and transistor PA or straight at antenna clips.

Pi – MU seldom is used at separate ATU. For matching in a wide frequency ranges loads with resistance 10-1000- Ohms it need to change C and L at Pi – MU too greatly. So, it is impossible to do universal Pi – MU.

It is desirable to use slider inductor because. In case if an inductor with fixed taps is used you can carefully to select the tap for real antenna.
CHAPTER 4: ATU

Something about ATU

L- Matching Unit

Fig. 14 shows L- MU. This one is a simplified version of Pi – MU. ATU, keeping L- MU often is used for operation with simple tube and transistor transceivers and for matching simple multi-range antennas, which do not contain large reactive component.

Parts for the ATU

The data of spools for the MU exhibited on Fig. 2 are shown in Tab. 1, for the MU exhibited on Fig. 3 are shown in Tab. 2.

Table 1 Data for MU exhibited on Fig. 2

<table>
<thead>
<tr>
<th>Frequency band, MHz</th>
<th>1,9</th>
<th>3,5-3,8</th>
<th>7</th>
<th>10</th>
<th>18</th>
<th>14</th>
<th>21</th>
<th>24</th>
<th>27-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of spool, mm</td>
<td>50</td>
<td>30</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Length of winding, mm</td>
<td>50</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Number of turns</td>
<td>100</td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>10</td>
<td>11,5</td>
<td>8,5</td>
<td>7,5</td>
<td>6,5</td>
</tr>
</tbody>
</table>

Table 2 Data for MU exhibited on Fig. 3

<table>
<thead>
<tr>
<th>Frequency band, MHz</th>
<th>1,9</th>
<th>3,5-3,8</th>
<th>7</th>
<th>10</th>
<th>14</th>
<th>18</th>
<th>21</th>
<th>24</th>
<th>27-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of spool, mm</td>
<td>50</td>
<td>40</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Length of winding, mm</td>
<td>60</td>
<td>40</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Number of turns, n</td>
<td>130</td>
<td>35</td>
<td>28</td>
<td>20</td>
<td>15</td>
<td>11,5</td>
<td>11</td>
<td>9,5</td>
<td>8,5</td>
</tr>
</tbody>
</table>

Table 3 Data for digital inductor shown in Fig. 9

<table>
<thead>
<tr>
<th>Inductance, µH</th>
<th>8</th>
<th>4</th>
<th>2</th>
<th>1</th>
<th>0,5</th>
<th>0,25</th>
<th>0,12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of spool, mm</td>
<td>30</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Length of winding, mm</td>
<td>30</td>
<td>20</td>
<td>25</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Number of turns, mm</td>
<td>20</td>
<td>18</td>
<td>12</td>
<td>8,5</td>
<td>5</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

It is possible to use for T –MU any variometer, which is possible to get. Variometer has to have maximum inductance not less than 30-µH and minimum close to zero. If the maximum of the inductance of the variometer is less, for expansion of frequency range of the ATU to include in serial with the variometer a fixed inductor. If the minimum inductance of the variometer does not reach zero, it is essentially cut off the upper range of operation of the ATU.

The design data for spools for digital inductor shown on Fig. 9 are shown in Tab. 3. Significant RF-currents flow through parts of MU - capacitors, inductors, and switches. So all of the parts should be qualitative.
CHAPTER 5

RADIO WAVE PROPAGATION
LDE, another look to inexplicable effect
by Igor Grigorov, RK3ZK

Sometimes we receive strange radio signals delayed compared to sent radio signals. The delaying time may take up to 30 minutes! We do not know yet, where the signals travel in the delaying time. Modern experiments confirm LDE, and scientists keep silence about the inexplicable effect. (More about LDE- just click GOOGLE. Subject LDE) Only supporters of UFO respond to it confidently…

The following hypothesis was put forward and scientifically proved by professor Ronald Bracewell (see his photo) at Stanford University, the USA, and astronomer Duncan Lunan from Scotland [1]. Having put on axes XY the force of the received in 1927 echo of the signal and its time delay, they detected, that the obtained picture reminds the constellation of Bootis visible from the Earth, though with small distortions. (Constellation of Bootis is shown at photo Bootis) They calculated that the shape the constellation is exhibited in the graph, was visible from the Earth 12,000 years back.

On this graph the aster Epsilon from this constellation Bootis was particularly prominent. These scientists consider that from one of planets of the aster Epsilon (Bootis) 12,000 years ago an interplanetary probe was sent. Having flown up to the Earth and having defined, that on this planet there was a life, it occupied a place in space on elliptic orbit equidistant from the Earth and Moon. Italian - French mathematician Josef Lagrange earlier mathematically justified the possibility of existence of such an orbit [2]. In his name this orbit was called Lagrange orbit, on which the alien space station is supposed to be.

As soon as this alien space station received the first narrow-band radio signals from the Earth, it began to relay them back to the Earth with the coding about the probe. The examination of other known delayed signals allowed the scientists to clarify some other surprising things.

With flow of time the supporters of this theory of LDE origin researched almost all known LDEs. Taking into consideration the time delay and the force of reception of delaying radio signals they attempted to find some regularity, and from here to find the useful coded information which is kept in the time delay. They attempted to detect this interplanetary probe, using modern means of space observation.
CHAPTER 5: R.W. PROPAGATION

But meanwhile this version (as well as however some others, less fancy) remains unproved, and it exists only in the circle of the supporters of UFO. By means of space observation devices this probe wasn’t detected. (Well, one my friend told me, that a Soviet Far -Space Radio Location Station detected the probe at Lagrange orbit, but I do not find prove for the information…) It is impossible to warrant that the regularity which is in the time delay and the force of LDE signals was also found. Certainly, this version with an interplanetary probe cannot be eliminated from consideration, as it was not confuted.

But nevertheless it is interesting if the aliens could not find any other way of attracting our attention to tell us about themselves, as only by relaying delayed in time and different in force radio signals of the earth radios…

Modern researches confirm LDE

R.J. Vidmar and F.W. Crawford at Stanford University, the USA confirmed the presence LDE, but they conclude that we still do not know which of the known mechanisms are valid for LDE. It is or pointed to presence of any natural phenomena promoting LDE and still unknown to us, or … or gives scores in hands of supporters of extraterrestrial reason of LDE…

Till now LDE is puzzle

Well, in all times it was characteristic for mankind to ascribe supernatural forces to some phenomena, which were not explained by natural forces. We know, ancient Greek believed that the Gods made rains, lightning, a convulsion of volcano.

Concerning to our time, mankind believe that some puzzle things produced by space intelligence and UFO…

Concerning to our time, mankind believe that some puzzle things produced by space intelligence and UFO…

But in due course many of these before mysterious and inexplicable phenomena were explained by quite earthly laws.

I believe, that in the future it will be possible to explain this mysterious phenomenon, and in tutorials on Radio Propagation the phenomenon will be described without any mysticism only using strict formulas. Perhaps in the future today’s schoolboys will be able to do it. The main thing is not to be afraid any mysterious and inexplicable phenomena and to investigate them bravely.

References:

1. www.et.presence.ndirect.co.uk
2. www.ufos.about.com/mbody.htm

www.antentop.bel.ru
CHAPTER 5: R.W. PROPAGATION

Einstein Wave
or
just LDE

by Igor Grigorov, VA3ZNW

antentop@antentop.org

Talking on an origin and on just existence of LDE go till the recent times. Yes, even just about existence of the LDE. Some scientists persistently do not recognize the existence of LDE and deny obvious authentic facts of reception LDE by many people. I do not know, why these scientists deny the obvious facts, may be because they can not explain this phenomenon. For the scientist if while it is impossible to explain something, if the something is not in frames of the laws existing in the modern science, the something can not exist.

However, lots of people, who do not know that LDE does not exist, have received LDE. After that they ask the scientist to explain the phenomenon, but the scientists tell them: LDE can not be exist…

I want to tell about my first receiving LDE. It was in the spring 1982, when I was studied at Kharkov Institute of Radio and Electronics. When I came in student hostel after my day study, I usually turned on my HF receiver, which was already tuned to BBC station that did broadcasting at 19 meter band. I used an old military receiver R- 311. In one of spring days, when I had switched on the receiver, I heard weak signs of another station on the background of BBC. BBC went to fading after several minutes however unknown weak signs went to strength and while some times they were louder then BBC. To my surprise the unknown station was also BBC but the signs of the unknown station were delayed on several minutes compared the BBC station. It was LDE!

Military USSR's receiver R- 311
Both BBC and its LDE were fading. Often LDE was considerably louder than the real BBC. I had received LDE near 5-10 minutes (I did not see at my watch). LDE was gone so sharply, as if was switched off. Just now I received two signals from BBC and LDE but through a second I received only one BBC. What was an interesting there was no interference whistle between BBC and its LDE.

I asked lecturers of Kharkov Institute of Radio and Electronics about the phenomena however I had met with a wall of silence. I had been told that such phenomenon can not be, because it can not be at all. Later I had known that LDE was a closed theme in the Soviet Union. Certainly, no one lecturer did not take a risk to talk to a student on the closed theme of LDE.

Later I have read that LDE with the large time of a delay (from several minutes and more) usually is discretely, and exist a not long time. For example, LDE with delay more the several minutes exists 5-10 minutes, then such long delay LDE is disappeared. Again it can be appeared only through some time, for example, 10-20 minutes. LDE with a small time delay, near 1-3 seconds, can exist long time, may be 20-30 minutes. After the small time LDE is disappeared it can be appeared again through several minutes.

As we know recently there is not any scientific explanation of the LDE.

I would like to offer mine version of an origin the LDE. The version does not break the laws of modern science. This version is based on the Einstein’s Theory of Relativity. Further I try to bound up LDE with the Theory of Relativity.

For my explanation of the origin LDE I am based on the Clock Paradox or Twin Paradox. If you do not know what is it Clock Paradox or Twins Paradox, please, use an internet search engine. Any search engine gives you lots link relative to the phrases.

Here I give a very simplified description of these paradoxes. If an object 2 moves with speed close to speed of light compared to an object 1, time at the object 1 goes faster then the time at the object 2. The clock installed on the object 1 shows hours however the clock installed on the object 2 shows minutes. It is so-called Clock Paradox. If one twin is on object 1 and another twin is on object 2, at their meeting it appears, that the second twin (from object 2) is younger than the twin who is on object 1. It is so-called Twins Paradox. Fig. 1 illustrates the situation.

A question 1, what is light. Till now scientists argue, is light waves or corpuscles. Experiments are confirmed that light has dual nature. In one experiment the light looks like waves. In another experiment light has corpuscles nature. However, if light, that is electromagnetic radiation, can have dual nature, why radio wave, that also is electromagnetic radiation, can not have such dual nature? Of course it can be!

After question 1, question 2. What will be, if compare an observer, who is on the Earth, corpuscles move with speed close to speed of light. May be for us it sounds strange however clock at the man, observing flight of these corpuscles, counts minutes, while the clock located at these corpuscles counts only seconds. The Paradox of Clock works in this case.
CHAPTER 5: R.W. PROPAGATION

Now we look to the next matter. A radio transmitter works at point A on the Earth. The radio wave from the transmitter comes in point B with a small delay T. Delay T is equal to distance L, which this wave has came, divided on speed of the radio wave (300.000/km/sec), see Fig. 2. Imagine if the radio wave, at presence of some conditions, is propagated also as corpuscles.

Or, radio wave turns in corpuscles, is distributed by corpuscles, which have speed close to speed of light, then the corpuscles again turns in usual radio wave. Let's name this corpuscle wave ‘Einstein wave’. Let's see to Clock Paradox. Minutes have passed for the observer, who is at point B, but only seconds have passed for Einstein wave.

In other words, observer, who is at point B, at first has received an usual radio wave and at second, while some time, has received Einstein wave, that contain the same information that the usual radio wave, that is already received. The delay time can be in millions times more the normal time of propagation of the radio wave.

So, at certain conditions, the observer can receive both a usual radio wave together with its LDE. However, what are the conditions, when radio wave turns to Einstein wave and back to radio wave? It is not known.

Certainly, it only my version LDE, and it is only a version, which does not apply to be true. It is necessary to say, that the Einstein wave sets lots questions. May be more then LDE...

http://www.antentop.org/ mirror: www.antentop.boom.ru

Page 5-5
There are a lot of interesting phenomena at ionosphere propagation of radio-wave (for example, remember LDE!). One of such phenomenon is nonlinear propagation of radio-wave in ionosphere. What is it this effect? A very exactly description of the phenomenon was given by Vladislav, RX3ALL, at a message sent by him in the RU-QRP-C forum on December 19, 2005.

(Below the message is given with some cuttings)

--It was an interesting propagation yesterday night on 20 meters. I turned on my transceiver approximately at 19-30 UTC (22-30 local time). Nobody was at the band. Suddenly I heard a very loud station, it was an Ukrainian ham station/MM, it keyed on CQ. I give my call/QRP with 5-watts running by my IC-718. Only “QRZ?” I have received. After several unsuccessful attempts to do QSO I increase my power to 10 watts. The Ukrainian station, operator Gene, gave me 599…

A vessel, whence the Ukrainian station has been worked, was at the Atlantic Ocean. Distance between our stations was approximately 7500 kms. I sent CQ near (on frequency) the Ukrainian station, and, in several minutes one station from Argentina called me, after the QSO, another station from Argentina called me! (All calls are in my log.)

BUT! The stations did not hear me on 5 watts, however when I run 10 watts, I have received 579 and 589.

Station UA3ZNW at middle 1980s.

Left corner: CW Transceiver and PA for 160, 80, 40, 20
Right corner: PSU 0-16 VDC, 0-24 VDC, 250-500 VDC, 6.3 VAC, 12.6 VAC
Receiver for 10 meters
Center: Automatic key, transmitter for 10 meters, receiver for 160, 80, 40 and 20 meters.
AM transmitter for 160 meters.
All equipment are home brew

http://www.antentop.org/ mirror: www.antentop.boom.ru
CHAPTER 5: R.W. PROPAGATION

About 21-00 UTC I worked with Uruguay, CV5D, operator Lu. The same story, at 5 watts no QSO, at 10 watts 579.

After 21-00 UTC the 20 meters band was closed.

Regards, Vladislav, RX3ALL 72!–

Vladislav met with a very interesting phenomenon, which is named (by me) nonlinear propagation of radio-wave in ionosphere. The phenomenon is, that at some small power (say 5 watts, as Vladislav had) it is impossible to do a QSO, nobody answers, however, if the power is a little increased (say to 10 watts, as Vladislav did), the QSO is going on 59. As a rule, this phenomenon is observed at DX QSO, if the distant is more than 2000 kms.

I have noticed this phenomenon in 1980s. At the times I had ham call UA3ZNW and I often sent CQ at 10 meters using a home brew transistor AM transmitter. 12 Volts from a PSU with manually variable voltage was going to the PA of the transmitter, and I had 3-watts RF power.

So, at the times I have met the same phenomenon as Vladislav met at 2005. When 12 Volts feed the PA, nobody answers, BUT, when 16 Volts feed the PA, I have received 59 from far stations. My transmitter runs 5 watts when 16 volts were across PA. So, it impossible explain, why at 3 watts GUHOR, but at 5 watts – ‘59.’ Usual theory of radio-propagation has no answer on the question.

I have noticed one more interesting effect of nonlinear propagation of radio-wave in ionosphere. It is possible to name this phenomenon as a trigger effect. The phenomenon is that at some small power (say 1 watt) nobody answers. However if the power is a little increased (say to 2 watts) you have received 59. Then power decreased (say, again to 1 watt) but anyway you have received 59 from your correspondent.

At first I noticed trigger effect at 10 meters band. Since an RF transistor of my PA was overheated at 16 volts, I worried, that it would go out of operation during QSO. In 1980s the RF power transistor costs pretty penny. So, I called my correspondent when my PA was fed by 16 volts, after that reduced voltage to 12 volts, and made QSO. As a rule, the QSO was completely done. The truth, sometimes during QSO my signs were ceased, then I again increased the voltage to 16 volts for a while.

A power radio station located in my city also could be the cause of the trigger effect. For example, I for a long time call DX station, no answer, then power station from my city have made QSO with the DX, after that the DX gives me 59. Such phenomenon often is observed by me in contents, when I try QRP. I call for a long time a far station, no answer, then a powerful station has made QSO with the DX. That is all, the DX gives me 599.

At first I thought that these strange things are only on 10 meters. But then I observed the phenomena on others amateur HF bands, from 160 up to 10 meters. The truth, on the 10 meters these phenomena are more sharply than on low-frequency HF ranges. Lots of hams and professionals also are familiar with the strange phenomena. My attempts to find a science explanation to these interesting phenomena are failed.

Professionals and scientists in personal talking about the phenomena sad me, that it is a whim of propagation or lack of my antenna or lack of the receiver of my correspondent. May be… But by me this effect was marked at various receivers, both self-made and professional, at different antennas, on diverse bands, and at stable (for the time) propagation…

... It seems to me this riddle is still unsolved ...

73/72! I.G.
In the beginning I shall quote Igor Bunich's book "Fuhrer's Pirates". The book describes one strange event, which was while a campaign of German raider "Atlantis" at the end of August, 1941:

"Have been going on the edge of pack-ice of Antarctica "Atlantis" has rounded New Zealand and was going to Kermadec islands, that are in seven hundred miles to the north... skip... Has passed Antipodes islands, "Atlantis" faced with a strange effect. The ship went in mysterious zone, where ship radio was dead on all bands. It seemed, all radio world has died out. Even atmospheric static interferences were no present. "Atlantis" has passed almost two hundred miles while the external world gave notice by a radio station from Australia."

I give the quota because I was in the same citation. There was in August, 1989, when I served in an air base "Chindan" near forgotten village Borzay, the Chita region, Russia.

In one of the August days, I come home for dinner (at 13-14 local time), and I decided to listen my receiver R-309. The receiver work fine from 1 to 36 MHz. It was inexplicably for me, but I found out, that there is not any reception! I did not hear even crashes of static. Wow, I turn on my TV "Vesna-326", also absolutely nothing! Well, nearly one hour have passed, when very weak reception began to appear.

I can not find any explanations for the effect.

By the way, in that day, when I observed the strange effect, the sky had unusually yellowish color. At that time for myself I have explained it, by that probably, in desert of Gobi (Mongolia - China), there was a powerful dusty storm.

Dust was deserted in average layers of the Earth atmosphere. Borzay is in 20 kms from border with Mongolia. But there is the question, why there was no propagation of surface radio waves? I did not hear LW, MW and VHF-TV!

Yours faithfully, Sergey A. Kovalev - US0NE

On the next pages there are pasted some facts about the phenomena, collected by Sergey, US0NE
CHAPTER 5: R.W. PROPAGATION

Michael RW6AT:

I faced with the phenomena. It was in the spring 2001, at 12 o'clock in the afternoon, after a strong magnetic storm. All bands, HF and VHF were dead. I even did not hear local VHF station with 50 watts, located near 5 kilometers from me...

Igor UT5UCY:

The similar effect I observed in the summer 1978. One of days of the test (I do not remember what the test was - if it will be interesting I can see old logs) I met with absolutely absence of radio propagation on all bands. I checked my equipment - it was all right... I did not understand, what happened and switched off my equipment. All worked well in another day....

Stanislav UA9XP:

In February 1961, approximately at 22 o'clock, a QSO on 10-M band with my friend, living from me at distance of 350-400 meters, failed. Such impression, that our radio stations A-7B, failed. But in forty minutes the communication was restored. In the time we saw northern lights.

Andrey, RW9WA:

Ten years back I observed similar phenomena in CQ WW SSB. There was very fine propagation, I called a KN6 station, and when I turned to reception - was a death silence in the ether... I checked antennas, transceiver, coaxial cables. Then I made a call to my friend in my town, UW9WW. He also heard nothing, and also disassembled his transceiver! A hour later, static interferences and a very weak reception began to appear.

George UY5XE:

Antipodes islands (IOTA - ZL-f) probably, for the given reasons, till now are a NEW ONE!

Nikolay UT2UZ:

Such failure in radio propagation is very rare, but it happens. About half-year back (2001 year) I faced with full closing at all ranges while forty minutes. May be unusually big solar flash destroyed reflecting layer in ionosphere...
I was a polar radio operator for four polar expeditions. So, I of course met with very strange effects at propagation of radio waves. The closer to geomagnetic poles of the Earth, the more often it happens. HF propagation is almost absence in the winter near the pole. Only very rare stations you can hear there. Especially it is at the northern lights. I often met with an one sided propagation, when I received lots station with 59++, but nobody hear me.

Very interesting event was with me and with Ivan Zhukov. He worked from plane IL-14 on 20-M band on the way to our polar station. There was great pile-up, but I heard nothing. But when the plane lowered to 2 kilometers above ice, Ivan sad, that his radio dead! Our scientist from the polar station did not found any explanation for the effect. Well, I met and with others, very, very strange phenomenon at propagation of radio waves….

Do you faced with the effect?

Write us about it!

www.antentop.bel.ru
In 2001 year I have sent a short message to Ukraine ham forum at KPC WebSite (www.krs.poltava.ua), and the message was published in QUA-UARL #46 in that 2001 year. Below I retell the message in few words.

“I think, that our planet, the Earth, has specific spots, which are almost identically to acupuncture spots placed on a human body. I called them “White Spots”, “Black Spots” and “Inverse Spots”. We have a good radio transmitting or receiving in White Spots, very bad radio transmitting or receiving in Black Spots, and we have some strange things in Inverse Spots.” - I guess, that many of hams do not agree with me. They say, “The propagation of radio waves obeys only to known laws. Okey, I do not want to argue with the hams, I only want to show my FEEDBACK. But, before the FEEDBACK, I want to tell once more my observation of the unusual effect, called EARTH ACUPUNCTURE.

Igor Grigorov, RK3ZK

Victor Zinenco, the chief of the lab of check-out equipment from one of gas-distillation factory located near Oposhnya town, says:

I know such Spots!

White and black spots at the Poltava region

At September of 2002, I was at Oposhnya, the Poltava region, Ukraine. I met with my old friend Zinenco Victor. He showed me others examples of influence of White and Black spots to activity of radio electronic and mechanical equipment.

Photo: Gas Torch near Oposhnya

Within four years Victor works as the chief of the lab of check-out equipment of one of gas-distillation factory located near Oposhnya. The factory cleans gas and makes gasoline. His lab attends to serve equipment for measuring a gas pressure in gas tubes and for measuring gases volume, passing through the gas tubes. The equipment consists of electronic and mechanical parts.

Photo: Into Zinenco office (Victor and me) and workplace
CHAPTER 5: R.W. PROPAGATION

As Zinenco Victor said, identical equipment were used at all gas wells. The equipment tested thoroughly before their installation. However, in some time, strange things happened to the equipment. In some places the equipment worked reliably very long time. On others gas wells the equipment were broke soon. Interesting things, at some places only mechanical parts of the equipment were broke, at other places only electronic parts of the equipment were broke.

There are places, where both as electronic, as mechanical parts of the equipment were broke. Victor also noted, that the breakages of the equipment were bound to names of places, where the equipment were installed.

Name of a place is very close bound up to character of the place in the Poltava region. For example, there is a terrain with the name “Cool Hole”. It is a shallow cavity, near 50 meters in the depth and near 3 kilometers in the diameter. The check-out equipment, installed at a gas-well placed in this terrain, often stopped to work.

A lot of places’ names are connected to an evil spirit. There are such places as “Hag Well”, “Devil’s Ravine”, and “Goblin’s Forest”. At water – wells, disposed at Hag Well, water periodically disappears and then appears again. Devil’s Ravine is a pine forest where the pine doubled and tripled at their root. Goblin’s Forest is a small forest disposed among small hills. However the natives do not go there because, in spite of the fact that the forest is small, it is very easy to lose the way in this forest. Natives do not recommend use mushrooms and berry from this forest for meals. Even good sorts of it may cause poisoning.

As Zinenco Victor said, equipment installed at gas-wells located at these “evil” places broke very often. Personal from the gas-wells frequently fall to sick.

Photo: Near village Light Windmill

Another deal is with the gas-wells located in good-named places. There are such places as “Happy Village”, “Green Village”, “Light Windmill”. Till now, there is an old wood windmill at the Light Windmill place. Equipment installed at the gas-wells located at these “happy” places work without breakages for a long time.

A lot of evil – named places were renamed for nothing speaking neutral names at the Soviet times. However, natives keep old names in their memory. Among themselves people named villages and places by the old names.

Tat’yna, the wife of my friend Victor, works at the historian museum of Oposhnya. She told me surprising national legends, bound with the names of the places. Her stories and data concerning breakages of equipment, installed in such strange places, assured me that Black and White Spots exist.

We do not know yet, how the strange places influence to electronic and mechanical equipment and also to the propagation of radio waves, but the influence is.

I had another interesting meeting in Oposhnya. I met with few native hams from the town. One of the oldest from them was Ivan Hrapach. His call sign is UTOHI, he is a radio amateur with the 30-year’s experience.

He told me a lot of interesting and mysterious things about his activity in the ether from the Poltava region. His stories confirmed my assurance about Black and White places and about Inverse places also as my assurance that the Poltava region contains a lot of such places…

Welcome to Dikan’ka, a mystery place near Oposhny!
CHAPTER 5: R.W. PROPAGATION

And another story from Alexandr Maxurov, UA6LTO

Alexandr Maxurov, UA6LTO, former chief of radio communication department of the Vorkuta geophysical expedition

“... Therefore it would be desirable to say some words in support of the idea about acupuncture of the Earth.

1. The theory of “acupuncture of the Earth” is not new, it has been discussed for a long time. Moreover, rather large experimental and factual stuff has been stored in some science departments...

2. Personally I accumulated rich data of this kind. They were stored by me throughout 1988 when I worked as a chief of radio communication department of the Vorkuta geophysical expedition. It was a very successful combination to study the problems of radio communication in polar tundra in connection with geophysical component. What a blessing it was that equipment for this purpose was quite good.

Seventeen field batches of Vorkuta geophysical expedition were scattered in terrain from Nar’yan-Mar up to Salekhard, the main base was in Vorkuta. Batches roam from place to place practically annually, therefore the research area was rather large. The batches used a short wave radio for communication inside tundra and with the main base in Vorkuta.

But personally for me the question of a particular interest was to find out the relation between geophysical conditions, in which the field batch was, and the quality of a radio communication between “field” and “base”. The same equipment in the field batch—transceivers – “RSO –30”, “Polosa”, “Groza”, “Almaz”, “Angara”, “Carat” (all of them Russian made) and the same antennas behaved completely differently when a field batch moved to a new place.

EARTH ACUPUNCTURE

There were also tragedies: the topographers, working around a field batch in radius up to 10 kms and equipped with a hand held HF transceiver “Carat”, sometimes were found frozen in winter. Using quite good radio set they could not contact on frequencies 1600-1800 kHz of the field batch the base radio when they were 5-6 kilometers from the base!

Transceiver Carat

Transceiver Angara

Transceiver Groza
CHAPTER 5: R.W. PROPAGATION

Certainly, any radio amateur after changing QTH, could personally be convinced that his equipment in a new place behaved in a different way. But I in this case speak about another thing: about a pure experiment. A move to another area, where there is another relief of district, other buildings and a level of man-made interference is one thing. But a move of a field batch 10-20 km in one side, with full back-up of disposition of living place, antenna masts and other equipment in Bolshezemel'skaya's tundra (i.e. practically on a flat place) is a different thing.

As a matter of fact, at changing a place on the Earth (or changing the acupuncture of the Earth), the quality of radio communication is changed greatly. Therefore, the quality of radio communication depends on what is beneath our feet!

Besides, if the radio amateur, having changed his QTH, does not always know the qualities of the new place, in my case, practically everything was known:
- conductance of soil,
- composition of high layers of the earth,
- climatic map,
- geomagnetic component (you see, the expedition is geophysical!)

In such conditions, during 1988-1992 years I managed to store a large stuff on subjects, which were interesting for me - conformity of geophysical parameters and conditions of radio waves propagation in Trans-polar circumstances. By that time I had already been a radio engineer (I had graduated from the Moscow Institute of Electronic Technology), these data were used by some of my friends for receiving Ms and Ph degrees.

Transceiver Polosa

EARTH ACUPUNCTURE

But all the same, in need of a serious special software study, this stuff is still awaiting a serious study...

3. A part of the practical guidelines on the choice of a place for antenna installation and generally for QTH of radio sets I promised the members of club "Arctica" to publish in a a special brochure - application to the club bulletin "Radiotop"...

I want to support EVERYTHING what is written by RK3ZK in his article "Acupuncture of the Earth", as everything mentioned in it has practical affirming by the stuff, stored by me.

Moreover, all radio amateurs who are interested in compiling such "Acupuncture map of the Earth" could contribute to it, having analyzed their own experience and QSOs journal.

Quite often the following may be heard in the ether:

"Your area goes to me on 59 at any propagation!"

It is also necessary to collect in one place data on such "couples" of QTH, which have in common such a notion as "at any propagation". It will be interesting to place them on the geographical map of the Earth and to see what it looks like. Certainly, it will be only the first, not precise approximation...

According to my data, the points, congenial for arranging antennas, are situated in nodes of grid 10 by 10 m, but common negative or positive characteristics of a node, as it is truly noted in the article of RK3ZK, can be expanded to 1-2 kms...

4. As far as the toponymy of the areas is concerned (dependence of the name of the place and its features), there, in the North, it is well-marked and corresponds to reality. You see, in tundra the places can be distinguished by the fact that on one of them reindeers graze, breed and put on flesh, and on the other – die.

5. For the sake of justice, I want to mark, that the following people who worked together with me also participated in gathering the data: Alexandr Babin (UA9XLG) and Vladimir Artyukevich (RA9XQ, exRA9XBF).

73! Alexandr Maxurov, UA6LTO (ex UA9XGB, RA9XO)
International northern radioclub
"ARKTIKA" was founded on Sept. 24, 1989 in Russian Arctic city Vorkuta (North part of UA9X region). Many HAMs from UA1Z, UA0B, UA1P, UA0K, UA0Q, JW, arctic DX-peditions to FJLand North Pole took part in this club organization.

The main aims are:
- to connect all polar radioamateurs and members of an arctic DX-peditions;
- to set up new arctic awards and contests;
- to organize DX-peditions to Russian Arctic area;
- to develop new and digital modes of HAM-radio in north QTH's;
- technical help and HAM-tutorial to young HAMs in small arctic QTH's;
- to set up regional and national arctic ham-ventions;
- peace, friendship and collaboration in World Arctic area.

To entry into club "ARKTIKA" need:
- live in (or travel to) any QTH under the North Polar Circle and make from this QTH one or more QSO;
- take part in any arctic (or antarctic) DX-pedition;
- win 1-3 places in contest "Arctic Cup" in any group;
- win all 3 units of "RAA" program (Diplom, Pennant, Medal).
No time limit. Any amateur from any country can entry in club.

Needed data: arctic callsign, QTH and time period, when this callsign was active. All members to get "life" membership number and club periodic info-bulletin "Radio-Top". There are 220 members in RC "ARKTIKA" on Sept 2002. RC "ARKTIKA" is very popular in Russia (see "RADIO" magazine #6/2002 - for example), but all info was spreading on Russian language only: http:\www.arktika.boom.ru

More info by privat e-mail to Club HQ: UA6LTO@mail.ru

UA6LTO, Alexander MakSurov, President of RADIOCLUB "ARKTIKA"
p.o. box 8, Novocherkassk, 346400, RUSSIA e-mail: UA6LTO@mail.ru
CHAPTER 5: R.W. PROPAGATION

The message, dated on December 18, 2002, was published by Alexander (Ed) Lesnichy (RU6LA) at The Radiotechnical "Hz" Forum. Ed says his opinion on Black and White Spots:

"... I remember how UB5IF worked, may be, there is anyone, who else remembers he. Twenty years back ago, UB5IF "rattled" on 40-m everywhere. And what is the most surprising, he had only VS1AA antenna (VS1AA is a simple wire antenna) and only 200 watt going to the antenna.

Data for “VS1AA” wire antenna

Ranges, m L, meters A, meters
80, 40, 20, 10 41 13,6
40, 20, 10 20,43 6,84

Photo: Ed RU6LA (left) and UA6LFQ

EARTH ACUPUNCTURE

We have had 3 elements YAGI for 40-m and 1000 watts output at that time, but UB5IF worked better us. UB5IF explained his success his correct made VS1AA. During long hours he told to us, how right to do the antenna.

But... Some days UB5IF moved from his old house to a new one. This new house was only several kilometers near his old house. And... He felt silent! His equipment have begun to work as it must work! So, anyone from far radio stations did not answer him. UB5IF remade again and again his VS1AA, then he moved his old VS1AA from his old house to his new house. Useless! New his place, evidently, was a Black Spot!"

73! ED, RU6LA

FEEDBACK from Dmitriy, RK6AOH

Dear Igor:

I completely agree with your article Earth Acupuncture. My experience has proved me in showed me in existence such spots. I have had no time to do a good antenna, and I decided to try a substitute antenna. The antenna had only 3.5 meters length and this one was installed at my balcony, I live at 6-th floor. As antenna ground I used copper foil hidden under wool carpet in my shack.

I turned on my 10-watts transceiver, and... what is surprise! I worked without hard for several thousands kilometers! I heard far stations they heard me, too. But my close neighbors from my hardly heard me, they did not hear the far stations. My friends did not believe me, that I used only 10 watts and 3.5 meters rod.

My work was or very excellent or very poor. Or I hear all, and all hear me, or I hear nothing in the ether. It was very interesting and unusual work in the ether. It was sorry for me, but I had to stop my work in the ether on transmitting for some while... But, when I will work again, I tell you more about my White place.

Yours faithfully Dmitriy, RK6AOH. 73!

Well, I know, there are lots pessimists who did not believe in the Black and White Spots... Okey, may be the next article gives you some feed for the brain.

So, go to next page!
Explanation: Is gravity the same over the surface of the Earth? No -- it turns out that in some places you will feel slightly heavier than others. The above relief map shows exaggerated highs and lows where the gravitational field of Earth is relatively strong and weak. A low spot can be seen just off the coast of India, while a relative high occurs in the South Pacific Ocean. The cause of these irregularities is unknown since present surface features do not appear dominant. Scientists hypothesize that factors that are more important lay in deep underground structures and may be related to the Earth's appearance in the distant past. To better map Earth's gravity and hence better understand its interior and past, NASA plans to launch the Gravity Recovery and Climate (GRACE) satellite in February.

The article was published at:
http://antwrp.gsfc.nasa.gov/apod/
http://astronet.ru

Discover the Cosmos!
ASTRONOMY PICTURE OF THE DAY

Well, I Think, it is very an interesting info, and it gives lots feed for though...

Dmitriy gives us own thinking about as the phenomena as about LDE. Go to the next page!

www.antentop.bel.ru
CHAPTER 5: R.W. PROPAGATION

And some conceptions from Dmitriy, RK6AOH, about White Spots and LDE

Now about some researches, supervision and reasons for White Spots and LDE:

1) Geological / geophysical conditions at my place:

My QTH contains acid clay ground with sandstone, it is situated between two nearest large breaks of the earth's crust - one in the north, in area Loo – town, the second - in the south, in territory of Georgia.

2) Supervision over the phenomenon of a White Spot:

1. The majority "strange" QSOs in the afternoon are spread in the direction conterminous to the direction of magnetic lines of the Earth, in the evening and the night time - on the contrary, in the perpendicular direction, basically to the west, in the direction of the sunset (that is good to match with usual theories of propagation of radio- waves).

2. The phenomenon of a White Spot has arisen at 21:25, June, 21, 2003, in ham range 80-m. I listened to the range because my substitute "antennal" does not allow to work on transfer in effectively way.

As well as always, I herd on the range neighbours' ham stations from 6-th area of Russia, Crimea, Ukraine, common everything, that are in the radius of 300~500 kilometers around me.

Suddenly (again suddenness!) somewhere in middle of the range, a "failure" was appeared. In one second, in the "failure" I began to hear already familiar stations from 9-th area of Russia (4000 kilometers away from me!), all were at first on 35., then 47., then all the station were on 59++!!

The level of signals of the stations grows linearly in the time. I heard about 5 stations from 9 areas of Russia (it is approximately 4000 kilometers from me!), which worked in a net. Signals from all of the stations had almost equal levels. I did not hear the usual ether's noise. At first I could not understood at once that occurs, and I did not written down the calls. The phenomena took 40- 60 seconds, then click, silence, and again I hear only my neighbours...

3) LDE and the connected points

May be radiowaves penetrate through the connected points of the Earth which, probably, form original liaison channels, practically on any distances on the Earth. It is possible, that in these liaison channels, radio waves are distributed faster, than in natural conditions.

Probably, the “conjugate” points suddenly can disappear and appear and also move over surfaces of the Earth owing to what that of the reasons.

May be, when a radio wave have entered into one conjugate point, another conjugate points is coupled with the first point (that point, where the radio wave have entered). Hence, the radio wave will go to a circle in such having got in such liaison channel.

May be, the radio wave can be even go to the time, not to the space. The modern physics know very little about properties of the time... After disconnection of these conjugate points, the radio wave leaves them in space, forming LDE ...

Depending on properties of the conjugate points there can be LDE with various time delays, from seconds to tens minutes.

Yours faithfully, Dmitry, RK6AOH

If You Can Read in Russian, Go to www.hamradio.online.ru

Huge library with tens FREE e- books at: www.cgham.ru/lib.htm

The Best Technical Site in Russian!

www.antentop.bel.ru
Earth Shadow, propagation related to earth shadow

by Michael Higgins, EI 0 CL, Email: mhiggins@airtel.net, http://www.cellcom.ie

CHAPTER 5: R.W. PROPAGATION

Not well understood it seems but the Earth Shadow has an enormous effect on over the horizon single and multi hop propagation on the HF bands.

Once the Ionized Layers are illuminated by the sun we generally get good refraction above certain frequencies which can and do vary (dependant of course on take off angle and so on). As we approach the poorer part of the 11 year cycle we can see this phenomena better.

With the Earths rotation relative to the sun we naturally and inevitably get areas on Earth which are gradually illuminated and then darkened by the apparently moving shadow (the earth is spinning & rotating too silly) relative to the sun in this case-- also we are moving relative to the other galaxies outside our own solar system.

When darkness comes as a result of this rotation so the refraction characteristics change too.

In the evenings then the East to West HF propagation at MUF (regardless of what it actually is in MHz) is usually better than the West to East.

The shadow appears to move Westwards at appx. 1000MPh at the equator so its quite noticable. (In fact the Earth is rotating Eastwards at the same speed) speaking from Planet Earth

If we project ourselves well out into space and view the Earth and Sun from a distance we would have a better overview. Observe it and see for yourself even from Earth.

The West to east suffers attenuation (in fact signals not being refracted) or going straight through the less ionized layers-while the East to West signals are better refracted (less attenuated) being refracted by the more existed (by the sun) ionized layers.

Attenuation is my way of describing less than perfect refraction in the above case. Just in case someone loses focus, I'm not discussing attenuation per se or even levels of attenuation. Just the phenomena we like to call by that name.

This phenomena is best observed in the twilight zone.

By the way I have just discovered that the "Black Hole " in our very own Solar system is actually located in Ireland. Try it and see for yourself. It took me many years to discover this.

At first the article was published at www.qrz.com. The article calls a great discussion about the shadow influence to propagation of radio waves. I agree with Michael, there is the influence! And, of course, it must be studied.

73! Igor Grigorov, RK3ZK

www.antentop.bel.ru

Page 5- 19
Sharbot Lake, Ontario, Canada lies a couple of kilometers south of the Trans-Canada Highway, about at the halfway point between Montreal and Toronto. It is perhaps 60 kilometers north of Kingston, which is at the northeast end of Lake Ontario. My grandfather bought a small island in Sharbot Lake in 1948, and I've travelled there regularly since I was 9 months old.

The island is about 150 meters long, but only about 25 meters wide. The long direction lies roughly northeast/southwest direction. There is a cottage near the northeast end. On official maps, the island is known as "Bradley's Island", but on some locally made maps it's known as "Rupert's Island" (Mr. Rupert was my grandfather). It's at 44 deg 46' north, 76 deg 42' west.

The island is wonderfully quiet in the radio spectrum. Our hydro (that's Canadian for AC power, eh?) and telephone connections are via underwater cables: this effectively blocks the noise that normally rides utility cables. There are no nearby cities or powerful radio transmitters. Ignition noise from passing motorboats is an occasional annoyance, but it's not a serious problem.

Even family members who are not radio hobbyists have for many years enjoyed "Medium Wave DXing": it's what you end up doing if you turn on an ordinary AM radio at night on the island. I've often brought my Sony 2001 up there for shortwave DXing. However, before this summer I had never brought a real communications receiver or the makings of a serious antenna system to the island.

This year I brought my Drake R8 and a bunch of antenna wire with me. Initially, I set up two antennas. Antenna #1 was about 120 meters of insulated wire, running nearly the length of the island, at a bearing of about 230 degrees. It was supported by trees at a height of 3-4 meters above the lake, 1-3 meters above the ground. 22 meters of bare copper wire submerged in the lake provided a ground, and an ICE Model 180 matching transformer coupled the antenna through 15 meters of cheap 75 ohm coax to the R8's input #1. Antenna #2 was about 8 meters of wire suspended almost vertically from a tree overhanging the cottage, connected directly to the R8's high impedance input #2. The ground for this antenna was provided by the grounded shield of antenna #1's coax: this arrangement is not good at rejecting noise from the power line, but with very clean power and few noise generating appliances it was usually acceptable (especially as I could always switch to #1). Antenna #1 was intended to be a nonterminated (bidirectional) Beverage, while #2 was intended to be omnidirectional. The following analysis assumes that #2 "was" omnidirectional.

Tests of the Beverage on shortwave were disappointing: while reception of many stations was excellent, there was very little difference in reception between the Beverage and the vertical. The orientation of the Beverage was such that I expected New Zealand to be in the forward lobe, and Europe to be in the back lobe. S-meter measurements in the 49 meter band revealed little difference between signal strength of RNZI, the Europeans, and other relatively distant stations on the vertical and on the Beverage, while relatively nearby stations such as WSHB and WWCR were substantially stronger on the Beverage. This implies that the Beverage had a strong preference for high angle radiation: this is not the way a Beverage is supposed to behave.

On the other hand, the Beverage showed substantial directivity on medium wave. Furthermore, the directivity was off the ends of the antenna, as it was supposed to be, preferring stations to the northeast and southwest over stations to the southeast (I didn't ID anything to the northwest: there's not a whole lot of civilization in that direction). This was rather surprising, since the Beverage was less than 1/2 wavelength long over most of the standard AM broadcast band! The Beverage was more efficient than the small vertical at MW also, so even signals off to the side were stronger on the Beverage. The front/side ratio was about 10 dB, which was enough to make a significant difference in many cases. For example, in the daytime the dominant station at 900 kHz on the Beverage was CHML in Hamilton, Ontario to the southwest, while on the vertical it was a station I never positively ID'd, but whose community service announcements referred to communities in northern New York, to the southeast. At night 1370 kHz was generally a confused mutter on the vertical, but the Beverage could usually pluck WXXI in Rochester, New York (more south than west, but still in the beam) out of the mess.

Despite the Beverage's directonality, the most distant mediumwave station I heard was best on the vertical: Radio ZIZ, St. Kitts on 555 kHz. A directional antenna only helps if it's pointed in the right direction!

Another surprise was longwave. I'd never really heard any longwave broadcasters before. From my home in Bedford, Massachusetts I can occasionally hear a word or two in between noise bursts and beacons, but never anything listenable. However, from the island I found that I could often hear European longwave.
CHAPTER 5: R.W. PROPAGATION

broadcasters at night: I hadn't realized that they could be heard so far from the ocean. Here's my log from around 0300 UT on August 11:

Freq SINPO ID
252 22252 Clarkestown, Ireland
234 22252 Junglinster, Luxembourg
216 33353 Roumoules, Luxembourg
183 24353 Saarlouis, Germany
162 22352 Alouis, France

All of the above were in French except for Atlantic 252 in English.

The Beverage didn't seem to be especially directional down there. I didn't really check it carefully, though: beacons aren't my thing, and the broadcasters were all in about the same direction. The vertical was just too short to adequately feed a 500 ohm input below 200 kHz, so the Beverage was the better antenna down there. The stations above 200 kHz sounded about the same on both antennas, although the signal from the Beverage was, of course, much stronger on the S-meter.

The unusually poor directivity of the Beverage at shortwave, and its unusually good directivity on mediumwave puzzled me. I guessed that the island itself must have something to do with this phenomenon. The ground under a Beverage is an important component of the antenna: could the island be acting differently from a more uniform surface? If the island was perturbing the behavior of the Beverage, could it be acting as an antenna all by itself? I realized then that there was a way to turn the island into an antenna. A "slot" antenna is just a slot (usually 1/2 wavelength long) in a conductive sheet. The island could act as a slot in the conductive lake water! A slot antenna is long and narrow, is not perfectly straight, so the current through the ground plays an important role in the function of a Beverage, and the unsymmetrical placement of the wire relative to the more conductive lake water undoubtedly severely distorted the current pattern in the ground. Next time I may try running the feed wire to my matching transformer.

It worked pretty well! The signals from the slot antenna were weaker than those from the Beverage, but below 10 MHz the signal to noise ratio was generally about the same. The slot was a poor performer above 10 MHz. It did not seem to be very directional on shortwave. On medium wave, the slot was noticeably directional, but in a rather different way from the Beverage. At the low end of the standard broadcast band, it seemed to have a "cardioid" pattern, with good response in every direction except northeast. The front to back ratio was about 10 dB. At the high end, the pattern was more like that of a dipole oriented like the island, with good response broadside, and poor response off the ends. CJCL 1430 in Toronto was especially weak, more than 15 dB down relative to stations off to the side (always using the vertical as a reference). Longwave was also good on the slot. I added Nador, Morocco at 171 kHz to my list of stations logged down there.

Although my antenna experiments were a bit of a bust at shortwave (nothing beat the simple vertical, no matter where the signal was coming from), shortwave reception was nevertheless very good at this quiet site. My home site in Bedford is also pretty quiet at shortwave, however, so there were few surprises in what I was able to hear. One exception was the main transmitter site of Radio Japan at Yamata. Asian stations are generally weak and unpredictable in eastern North America, but Yamata seems to be particularly bad in New England. Why this should be I don't know, but I've never positively ID'd it from the Boston area, despite trying for several years from two sites with several different antennas. However, from the island I could hear Yamata on 9535 kHz! For example, at 1720 on August 10, I had it at S4, SINPO 25332 on the vertical. Not a breathtakingly good signal, but "much" better than I'm used to!

I also believe I heard Papua New Guinea on 3220 one night, but I made the log entry on a piece of scrap paper in the dark (to avoid waking my wife), and I can't read the time or date now. It sounded a lot like Steve Byan's recordings. If you think the R8's ergonomics are bad normally, you should try operating it in the dark!

Analysis:

I think the reason that the Beverage lacked directionality at shortwave was that it wasn't arranged symmetrically with respect to the island. I tried to keep the antenna straight. However, the island, although it is long and narrow, is not perfectly straight, so the antenna was not centered on the island. The return current through the ground plays an important role in the function of a Beverage, and the unsymmetrical placement of the wire relative to the more conductive lake water undoubtedly severely distorted the current pattern in the ground. Next time I may try running the antenna as close to the island's centerline as possible: it won't be quite straight, but it just might work better.

The use of an island as a slot antenna turns out not to be a new idea: I found a paper on it in a library at MIT. There was both theoretical and experimental work on the use of large islands as VLF antennas published around 1960. The paper I found (by Harold Staras of
Pedersen ray propagation

Pedersen ray propagation takes place at the transition from one ionospheric region to another, the lowest being between the top of the E-region and the bottom of the F1-region while the highest at the F2-peak which divides the bottom and topsides of the F-region. This form of propagation happens when a ray which came up from below the transition region has been refracted such that it is finally moving parallel to the earth's surface at the ionospheric boundary and continues that way for some distance.

Pedersen ray propagation results in long hops for signals in the HF part of the spectrum but any change or gradient in the electron density in the top of the F-region, an increase or decrease, will refract the signal away from that direction, down to ground or up to Infinity from the F-peak. In practice, this mode is rather unstable and appears briefly (see p. 181 of Davies' recent book for experience on North Atlantic paths.)

Turning to 1.8 MHz signals, something resembling Pedersen ray propagation can take place at the top of the night-time E-region. In case you have missed it, I have written on this topic several times, pointing out that long E-F hops can take place, covering distances up to 3,000 km instead of the more familiar 1,000 km E-hops or 2,000 km F-hops. Such E-F hops are expected on theoretical grounds because of the nature of the electron density distribution, a deep valley above the E-peak developing after sunset. Experimentally, a valley distribution is well-documented and has been seen for years, by incoherent scatter radars from Puerto Rico to Northern Norway, leaving no room for any dispute.

Beyond the theoretical idea, one can explore the computational side of long E-F hops by means of ray-tracing of paths across the ionosphere. Mainframe computer programs developed in Boulder by the Department of Commerce radiophysicists in the 60's and 70's allowed such studies, even including the effects of the earth's magnetic field. Those programs have now been brought down to the PC level in the PropLab Pro program, available for use in amateur circles. (Let me recommend it to you!)

Briefly, such ray-tracings show that E-hops on a path are found at low radiation angles incident on the bottom of the E-region. Then, by advancing the radiation angle in small steps, one finds the E-hops become longer and longer til they go over to E-F modes where the path rises to a peak in the F1-region and then retraces itself down through the E-region to ground:

Figure 1
Finally, at slightly higher radiation angles, signals are propagated by F-hops instead of E- or E-F hops:

The fact that ray-tracings show 1.8 MHz paths are limited to the lower ionosphere, rising no more than about 200 km instead of to the 300+ km F-peak, stems from a fundamental result of ionospheric theory. Briefly put, only a fraction of the 1.8 MHz operating frequency is effective in carrying Top Band signals obliquely up into the ionosphere. That fraction is found by multiplying the QRG by the cosine of the angle by which the signal goes into the ionospheric region. Thus, for a 30 degree take-off angle, RF approaches the ionospheric layer with a 60 degree angle from the vertical and the effective vertical frequency would be 0.9 MHz.

So signals would peak at an altitude where the local plasma frequency is 0.9 MHz. Of course, that would depend on latitude but would not come close to the height of the F2-peak where plasma frequencies are always greater than 3 MHz, even at solar minimum.

Now everything that I have said above can be verified by using the PropLab Pro program in 2-dimensions. Just pick a path in darkness, start at a low radiation angle, say 10 degrees, and slowly increase the angle, 0.1-0.2 degree at a time. First you will see E-hops, then E-F hops and finally F-hops. Nothing to it!

Those simple paths would apply to Top Band propagation except for the presence of the geomagnetic field. The theory is much more involved now but the results are much the same, at least as far as how high Top Band signals rise in the ionosphere. With PropLab Pro, you can use the same incremental technique and explore paths. I have done it thousands of times!

What you see when you take the program to 3-dimensions is about like before: first, E-hops at low radiation angles, then E-F hops, then either F-hops at a slightly higher angle or a DUCTED PATH, slightly skewed, where the ducting amounts to a string of E-F hops in series. But that is Pandora's Box (in more ways than one) and I will have to stop right here.

This is obviously a complicated matter and I won’t belabor the subject further. Simply let me say that HF ideas are quite out of place when it comes to Top Band propagation and a whole new approach is required if you still think that way. But this is not news; it has been around propagation circles for 50 years!

If you’re interested in these matters, I have an article in the Spring ’98 issue of Communications Quarterly as well as a shorter one in the Top Band Anthology published recently by the Western Washington DX Club. Background material may be found in issues of The DX Magazine, 1996 and onward. I had hoped these ideas, old as they are, would not continue to remain well-kept secrets but that seems to be the case.

Finally, I hope I haven’t offended anybody. I didn’t invent these ideas; I am the "messenger" and am just trying to tell it like it is, REALLY IS! With that I will hold my peace.

73,
Bob, NM7M

FAQ on WWW: http://www.contesting.com/topband.html
Submissions: topband@contesting.com

www.antentop.bel.ru

Page 5- 23
Those radio amateurs who are going on a high-mountain radio expedition must know about the following thing. Clouds and snow do harmful effect to antennas in the mountains. During my previous mountain trips I ran into this effect.

However, the harmful effect very obviously arose on Ai - Petri plateau during the UR- QRP-C radio expedition. This effect essentially corrected the schedule of our radio expedition. All members of the radio expedition observed the effect and they could confirm the truth of my observation.

Clouds against antennas

So, it happened in May, 2001, during the radio expedition of the UR-QRP-C on Ai - Petri plateau. We used a special call sign EM5QRP. For work on short waves we installed two antennas. One antenna was a usual long wire in length of 55 meters. The second antenna was a GPA-30 vertical multirange antenna, made by the Fritzel corporation. More detailed information concerning our antennas, ways of their installation and accommodation of the expedition in Ai-Petri shelter can be found in reference [1] (in Russian).

Though the main part of Ai-Petri plateau is only 1200 meters above sea level, clouds would often cover the plateau. They constantly fall down to Ai-Petri plateau from the sky. Then the wind slowly moves the cloud over the plateau in various sides. It occurs that the weather changes dramatically within five minutes. The Sun shines, then a cloud falls down to the plateau, it rains, the wind blows away the cloud, and the Sun shines again.

The cloud does not choose a side where it moves on the plateau. The wind controls the cloud. If the cloud moves over the plateau aside our antennas, it does not influence the work of our radio expedition. But, if the cloud "sits" directly on our antennas, the work of our radio station becomes impossible. We named this harmful effect as "Ai-Petri effect ".

How it was opened

At first I thought that the reason for periodic deterioration of reception and transmission on the radio station of our radio expedition was due to bad contacts in antenna’s terminal of ATU (an Antenna Tuning Unit). The wires of the antenna and grounding were repeatedly and carefully cleaned and plugs were tightly twisted. It felt as if we observed the "imaginary effect" caused by these actions.

It was like you turned off contacts, cleaned wires, stretched twirled contacts, and the work of our radio station again renewed. But in spite of periodical cleaning of the contacts, reception and transmission on our radio station vanished away and appeared again. Obviously, the true reason for periodic deterioration of work at our radio station was not in bad contacts …

Dielectric cloud around the antenna

Dielectric permeability of a cloud differs from that one of the air, which is equal to 1. Therefore, if a cloud sits on the antenna, antenna’s electric length changes. It results in a change of resonant frequency of the antenna. Input resistance of the antenna also changes.

Usually, a cloud is sitting on an antenna for a rather short time, for one - three minutes. Within the minutes the current in the antenna varies in a few times. ATU’s RF ammeter shows these current varies. Certainly, it is impossible to provide constant tuning of the ATU within the minutes!

Screening of the antenna

It turned out that a cloud does another even more harmful effect to antennas than the change of the resonant frequency of antennas in the cloud. The effect is the screening of the antenna by the cloud. The cloud consists of billions of tiny droplets, and each one can bear a small negative (concerning the surface of the ground) charge. Also each of the tiny droplets is not an insulator due to thunderbolt, each droplet has a small conductivity to electricity.
Hence, the cloud has a small conductivity to electricity and a negative charge concerning the ground. And this substance covers our antennas. It is like when a metal sheet covers our antennas. Still some minutes ago there might be a magnificent reception. Within a couple of minutes the cloud covered our antennas and the reception is completely stopped. This effect was observed mainly in the afternoon when the white clouds covered the antennas.

A black cloud is not dangerous

It was noticed by us, if a black cloud covered our antennas, the reception was present, though it was weak. It remains a riddle for me. The black cloud is usually much denser than the white one. When a black cloud covered me, I was under the impression that I was in fine douche. A lot of microscopic droplets of water gathered round me. The droplets fell on my clothes and hair, got in my nose and ears. It is darkly, that such a black cloud influences the reception much less that a white one.

A night is better than a day

At night a full stopping of the radio reception due to clouds was not observed. Usually only the effect of detuning of the antennas appeared when a cloud sat on antennas or passed through them. At this time reception became unsatisfactory, antenna current varied at transmitting mode. It was necessary to stop work on our radio station temporarily and wait until the wind blew away the cloud from our antennas.

Other amateurs faced the phenomena

Hams who worked in mountain conditions also faced the effect of influence of the cloud on antennas. Andrey Blinushov/UA3SGV writes about his amateur radio work during his trip across Hibina Mountains in 2002 [2].

Andrey Blinushov

*On August 11, alpinist group with my guys left our mountain camp for a three-day ring trip, and I danced from impatience - quickly to my transceiver! But within one hour a dense cloud, bearing fine rain suspension, descended the mountain ridge Chasnochorra to the place, where I stayed, and covered our mountain camp. And for all the day - only 14 QSOs! I heard about the radio expedition of EM5QRP on Ai-Petri. When such a cloud sat on their antennas, the radio communication broke. It was a surprise for me at that time. Now I have faced such a phenomenon myself…"

Cloud cancels directional antennas

We had to refuse the installation of directional wire antennas, which I had taken with me because of the cloud effect. Really, a greater part of time Ai-Petri plateau is covered with clouds. So, our antennas are also covered with clouds… It was not wise to install directional antennas, which will not function a greater part of the time. Inside a cloud the elements of directional antennas, for example such as YAGI, will not have those resonant frequencies which are necessary for their proper work. Hence, these antennas will have no proper diagram directivity.

Antennas with phased feeding would not help us. Clouds have variable dielectric permeability through their volume, and moreover, these clouds are constantly moving through our antennas. So, the electric distance between elements of the phased feeding of the antenna will be constantly changing. Hence, the diagram directivity of such a phased antenna will change according to unknown law. That is why we could use only simple single-element antennas for work during the radio expedition on Ai-Petri plateau.

Antenna current from clouds to the ground

We noted one more very interesting effect at covering our antennas by a cloud. My ATU, which we used during our radio expedition on Ai-Petri (circuit of the ATU is given in reference [3]), had an RF ammeter in antenna circuit. The meter indicated a hundred milliamperes whenever a dense white cloud quickly passed through our antennas. It was completely useless to hope for any reception in these conditions. Only a steady crash and roar was in our headphones.

If only this useless current, flowing between a cloud and the ground, one could direct for useful needs. For example, it could charge accumulators. This idea sounds fantastic, but such high current is quite capable not only to interfere with reception but also to do some good things, for example, to charge accumulators.

Electrically grounding is mandatory for antennas

It shows that electrical grounding is an important thing for any antenna in the mountains. The antenna terminal at my self-made ATU was electrically connected to ATU’s case (I used a resistor by resistance of 100k Ohm / 2 watts), and the case was grounded to the real earth. Cloud current flowed from a cloud to the earth, and did not do us any harm.

<www.antentop.bel.ru>
The antenna terminal of the R-143 radio, which we used for work in our expedition, was not electrically connected to the case of this one. As a result of it, if clouds covered our antennas, this radio station could not work in the ether without ATU. Without ATU, a neon bulb, placed near the antenna terminal of the R-143 radio, shone. Sparks jumped from the antenna terminal to the case of the R-143 radio. It might damage this radio station if the antenna accumulated too big static potential.

The Ai- Petry effect in winter

In December 2001, the UR-QRP-C organized expedition to Ai – Petri plateau. This expedition was dedicated to the centenary of the first wireless contact of G. Marconi across the Atlantic Ocean.

There were used two antennas for short waves. One of them was an antenna of a Long Wire type. It was 55 meters in length, the top end of which was fixed to the mast of rescuers. The second antenna was a CB-dipole. Each wing of this dipole was 2,7 meters in length. The dipole was fed through a thick coaxial cable with characteristic impedance of 75 Ohm. The coaxial cable was 8 meters in length. This CB-dipole worked well on ranges of 10-20 meters. Each antenna was connected by its own separate ATU to our transmitting equipment. In winter we also encountered the influence of weather mountain conditions on our antennas. In winter this effect was caused by snow.

Snow has effected the antennas

Almost constantly there was snowfall on Ai- Petri plateau. It was very beautiful when large white snowflakes slowly fell onto the ground. Alas, each snowflake carried a small negative charge. It caused a weak click in earphones if such a charged snowflake discharged our antenna. The click was much stronger if 10, 20, or 100 snowflakes simultaneously discharged the antenna, or rather there was a constant crash from weak to a loud one in the earphones. During a strong blizzard, when the snow enveloped our antennas, it was almost impossible to work in the ether because of a loud crash in the earphones.
CHAPTER 5: R.W. PROPAGATION

Snow produced an antenna current

When the blizzard was very strong, there was an atmospheric current between the antenna and the ground. The RF ammeter located on our ATU confidently registered this current. But the current was not so strong as in the spring 2001, when white clouds passed through our antennas. Snow caused a current near 10 milliamperes (reportedly to the RF ammeter of the ATU).

During snowfalls we did not observe a full stopping of radio reception as it was in the spring when a white cloud sat on our antennas. Certainly, it was difficult to work in the ether with strong crashes in the earphones. But a couple of days later we adapted to the crashes in our earphones. Dry snow did not strongly affect our work in the ether. Only damp snow hindered our work.

Damp snow attacks our antennas

Damp snowflakes seldom carried a negative charge. At contact with our antenna such snowflakes did not cause clicks in the earphones. When the snow was damp, there was a silence in earphones, however it was a deceptive silence. Damp snowflakes stuck to our antennas. Gradually the antennas became thicker and thicker in their forms, they looked like thick white exotic snakes.

So, damp snowfall dressed our antennas in a thick "snow sleeve" or a thick dielectric sleeve. Dielectric permeability of snow and especially damp snow is much higher than 1. Hence, this snow sleeve changed the electric length and input impedance of our antennas.

During damp snowfall the antenna parameters constantly changed while snow was sticking to antenna wires because the electric length and input impedance of the antennas depended on thickness of this snow covering. Almost constantly it was necessary to tune the ATU connected to each antenna.

Snow dancing and Antenna shaking

After some time of the damp snowfall the ATU could not tune the antennas. The antenna current "float"ed at transmission mode, the reception was very bad.

Then one of us dressed warmly, took a long stick and went out to shake off the snow from antennas. After that the antennas were operable for some time again, up to the next sticking snow. As a rule, it was necessary to shake off snow from our antennas several times a day. But during strong snowfalls it was necessary to shake them almost each hour.

Snow Cloud is going

Near a Snow Cloud

Snake Antennas

There was a lot of snow on Ai- Petri plateau! It was necessary to "float" through that snow to our antennas standing up to belt in snow and in some place up to breast to beat the antennas with a long stick.

Soon snow was in pockets of overcoats, in footwear, in sleeves. At the unsuccessful strike, snow from antennas fell under the collar, in the nose and ears, in the mouth, covered the glasses. The man came back stuck round with snow like a big snowball and ran to our fireplace to warm himself.
CHAPTER 5: R.W. PROPAGATION

Half an hour later our traces near antennas were snowed in. To shake off the snow from antennas it was necessary to make a new path again… again to go through snow up to belt.

Silent night

Certainly, we could shake off snow from our antennas only in daytime. At night our lantern gave us about several meters of good visibility in strong snowfall. It was unsafe to go at this time up to belt or up to breast in snow to any side from our shelter. Therefore, at night we did not work in the ether. Let me remind you, our radio station operated in the ether each night in the spring, 2001.

In the morning our antennas being stuck with snow bent almost to the ground or to be correct to the snow lying on the ground. Thickness of the snow, stuck to our antennas and coaxial cable of CB dipole, sometimes reached 20 centimeters in diameter. Each morning I thought with horror that our antennas would not sustain snow and break. It would be very difficult for us to restore them in conditions of constant snowfall. Metal mast, where upper end of LW antenna was tied, was covered with ice for the second day of our expedition. It was impossible to climb it.

The roof of the shelter was covered with ice and a thick layer of snow. It was impossible to climb this roof. Hence, it would be impossible to restore both the LW and the dipole antenna. When the expedition was over and we left the shelter, our antennas stayed hanging in their places…

In the morning it was impossible to tune the antennas covered with snow. Antenna current "floated", reception and transmission was unsatisfactory. Only after shaking the snow off it started to work. And the station EN100GM again was operating in the ether!

References

1. I.Grigorov.; Expedition to Crimea mountains www.mountain.ru

www.antentop.bel.ru
CHAPTER 6

QRP

TRANSCEIVERS
CHAPTER 6: QRP TRANSCEIVERS

QRP - projects from UR- QRP- C

RU-QRP- C presented for you several QRP- projects of their members.

My First QRP-Station

Three transceivers from Oleg Borodin, RV3GM/QRP E-mail master72@lipetsk.ru

Remember, '70-th when I was a young SWL, I has build my first direct conversional receiver (pict. 1) It was too wonderful for me because he is very simple, just a three transistors are in receiver's circuit and a few any details. I powered this RX by 9 volts battery of pocket broadcast receiver. I has not a good antenna and I used a piece of wire in my room. For the first testing construction I did not make a PCB and build this RX as “space” style on a piece of printed board. It was a 80m band version. Results was shocked me at once!

Before I used for SWL old broadcast receiver by 6 valves with home-made local oscillator. Having heard an ether on my new DC RX and at once forgot about the old lamp receiver. The sound was clear, sensitivity very high and I has heard a lot of DXs during some evenings and nights. After my first fun I has developed PCB and rebuild the RX for the box of printed boards also.

Alongside to this 80m variant receivers under the similar circuit on 40 and 20 m bands are also were constructed. The results were obtained also excellent.

My next step with Direct Conversional was when I get a HAM license. I began to experiment the receiver in hope to transform it into the transceiver. First of all I have decided to submit a VFO signal to the antenna through a keyed amplifier stage (pict.2). It worked well. There was even a frequency shift by transmission about 1 kHz that enabled to hear stations without additional RIT. But, taking into account, that VFO works on frequency twice below, than the received frequency, power of a transmitting signal in the antenna was rather small, just few decimals of milliwatts. I has just a few nearest QSOs with this QRP on 80m band only. It is impossible to use this circuit on 40 or 20m bands because the frequency shift is too large (5 to 10 kHz) and your signals will be outside from a signals of your correspondents.

http://www.antentop.bel.ru/
The following version of the transceiver based on receiver (fig. 3) consist in addition keyed freq's doubler and stage of an amplifier. It gives me a good 0.75 watt output at 80 and 40 m bands and 0.3 watt at 20m. I only needed to add the RIT and sidetone.

I has a many pleasure days with this transceivers. I build a three tcvrs for any bands. I did not made a multi-band trcvr because the complicating of commutation bands chains would necessarily be mirrored in quality of the transceiver in the worse side. The frequency stability would worsen, be sure. Well also it is not necessary to forget that the main advantage of direct conversion equipment is a simplicity.

The kits of parts and PCB of these receivers or transceivers are available at me, send me your orders by e-mail or post.

72! from RV3GM/QRP
CHAPTER 6: QRP TRANSCEIVERS

GNOMIK-80-M QRP transceiver

Introduction

The goal of this project is to provide to Amateur Radio beginners with a working QRPp CW transceiver that they build and learning the knowledge of transmitting and receiving equipment on the most of popular HF band 80 m.

This "Gnomik" transceiver contains two separate units: direct conversion receiver (RX) based on modified DC receiver designed by Vlad Polyakov RA3AAE and transmission unit (PA) based on standard scheme frequency-doubler and amplifier. The RX's heterodyne operate on a half of receiving frequency.

History

For the first time "Gnomik" was designed at 1986 year by Oleg RV3GM after he has experimented with RA3AAE DC receiver. Oleg updated receiver with transmission unit and after some modifications "Gnomik" was ready. There are some QSO's from Oleg's Log Book he has operated with "Gnomik":

<table>
<thead>
<tr>
<th>Date</th>
<th>GMT</th>
<th>Call</th>
<th>RST</th>
<th>Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>07 Apr. 1986</td>
<td>20:35</td>
<td>RV3GMFX</td>
<td>569</td>
<td>Kherson (Ukraine)</td>
</tr>
<tr>
<td>07 Apr. 1986</td>
<td>21:42</td>
<td>UA3GIX</td>
<td>569</td>
<td>Voronezh, Volter</td>
</tr>
<tr>
<td>11 Apr. 1986</td>
<td>18:30</td>
<td>UA1CPX</td>
<td>579</td>
<td>Saratov (on Volga)</td>
</tr>
<tr>
<td>18 Apr. 1986</td>
<td>00:27</td>
<td>UA8PCO</td>
<td>569</td>
<td>Grozny (Caucuses)</td>
</tr>
<tr>
<td>20 Apr. 1986</td>
<td>19:03</td>
<td>UA1OB</td>
<td>569</td>
<td>nr Arhangelsk</td>
</tr>
<tr>
<td>23 May 1986</td>
<td>20:37</td>
<td>UV8PGA</td>
<td>579</td>
<td>Naryn (Kirghiz Rep.)</td>
</tr>
<tr>
<td>31 May 1986</td>
<td>20:10</td>
<td>LZZA</td>
<td>559</td>
<td>Vama</td>
</tr>
<tr>
<td>10 July 1986</td>
<td>19:54</td>
<td>H8BOJ</td>
<td>579</td>
<td>Mohora</td>
</tr>
</tbody>
</table>

etc... etc...

Parameters

Output power of transceiver is 500 mW approximately. Sensitivity of receiver is about 2 uV. Antenna's impedance 50 Ohm. "Gnomik" powered by stabilized DC power supply unit 12:13,8 V @ 150 mA max. current (positive to "ground").

Upgrade

Optionally, you may insert to "Gnomik" some modifications: RIT, side-tone, digital frequency meter, output RF meter, S-meter, Antenna Tuning Unit. That's fine! How you like! But don't forget, that the major advantage of direct conversion QRPp equipment is it's simplicity! 72 and good luck!

http://www.antentop.bel.ru/
CHAPTER 6: QRP TRANSCEIVERS

GNOMIK-80-M QRP- transceiver

"Micro-80" is the first smallest and the simplest transceiver in the World. This is a prototype of some next wellknow kits "PIXIE", "Tiny Tornado".

This transceiver's kit contains all the components (without xtal only), PCB and assembly manual. Just 4 n-p-n transistors, 5 resistors, 2 inductors and 7 capacitors are mount on 35 x 50 mm PCB.

There are some QSO's from RV3GM Log Book operated with "Micro-80":

Kit is available at RV3GM

http://www.antentop.bel.ru/
RU-QRP Club has organized 1st August 2002 under the initiative Oleg V. Borodin RV3GM/QRP. By the purpose of creation of Club is the association the Radio Amateurs interested by communications on the small power equipment; propagation of operation on QRP in the purposes of reduction of mutual interferences, study of propagation radio waves, boosting of skill operations in a drain ether; the help initial to the Radio Amateurs in study the RX & TX equipment and antennas, rules of operation in a drain ether; an exchange by experience and hardening friendly between the Radio Amateurs of World Wide.

The member of Club can become any Amateur interested QRP having the license. For this purpose it is necessary to send to address Club or on to E-mail announcement the any shape with the indicating first name, middle initial, last name, callsign, address E-mails, post address. Briefly to tell about achievement in QRP. It is desirable to point age, experience of operation in drain ether and whenever possible to affix in aspect of files of a format *.jpg interesting photos for a photoalbum. At an entrance to Club necessarily it is required to give datas on the achievements on QRP. Such datas is statistics on wkd/cfm QRP DXCC and 2-way QRP DXCC (separately on sorts of CW, SSB, Digital and per Bands). See special blank on the link "Join to the Club" at the site. Each member of Club receives unique Member's number.

In Club is present library with a collection technical literature on to different aspects QRP. And also the subscription to journals of International QRP of Clubs: QRP Quartery, SPRAT, OK-QRP etc. Club is submitted on constantly International Internet - Forums QRP-L, QRPp-I, G-QRP, OK-QRP. RU-QRP Club is an associative member of World QRP Federation (W.Q.F.)

On all questions, coupled with activity of Club, with by the offers on improvement Club operations, with the interesting projects welcome to the address: P.O. Box 229, Lipetsk, 398043, Russia (for the answer apply the SASE) or by E-mail master72@lipetsk.ru

Club have a good cooperations with QRP-Clubs of other countries: QRP-ARCI, G-QRP, QRPp-I, Hawaii-QRP, Maryland Milliwatt, UR-QRP, OK-QRP etc.
It was… Well, when it was… I guess, it was at the end 80s and in the beginning of the 90s. Perestroyka. Gorbachev. Eltcin stand on a tank… Well, it has no matter to our transceiver. At the times I was the director of the cooperative “Vibrissa.” Well, it was one- man cooperative, so, I was as the director as the main worker. I did equipment for radio amateurs.

The transceiver was one of my products. I have done near 50 samples of the transceiver. It worked very well. At 1991 I sent the description of the transceiver to the magazine of the “U- QRP- C.” The article is used copies of the original schematics published by “U- QRP- C. Reference Book- #3,” pages 9- 10. The whole issue of the “References” is on the “CD- Antentop- V007.01”
CHAPTER 6: QRP TRANSCEIVERS

Simple QRP CW Transceiver for the 20 meters

CW Transceiver 20- Meters
(See schematic on the page 68. Schematic is from the original manual. Was reproduced at "U- QRP- C. Reference Book- #3)

DATA:
RF Power: near 1 watt at 24 V.
Range of Feeding Voltage: 18- 24 Volts
Antenna impedance: 75 Ohms (can be any desirable)
Quartz Stabilization Frequency.
Shift TX/RX: 400… 700 Hz.
VXO: 3… 6 kHz (depends on used quartz)

DESCRIPTION:
RX MODE: T1 is mixer. Used power RF MOS transistor, 3 Watts, 250 MHz.. T2 is oscillator, the same as 2N2222. Operational amplifier any available. Here used with gain 100,000.
TX MODE: Relay P1 turns T1 to TX mode. Parts R12, C16, D1 do frequency shift on 400… 700 Hz (depends on used quartz). It is possible to use quartz both as on 7 as on 14 MHz. T1 is installed on a small heater sink, so long duty TX mode available.

I did tuning of the L1C1C2C3 to match 75 Ohm coaxial, however, it is possible to tune this one on any load in the range of 50- 300 Ohms by C1C2C3.
Transceiver can work without a quartz if you go connections shown in dotted line. Of course, the frequency would be nonstable.

PARTS:
L1- 9 turns, wire 1 mm (18 AWG), diameter 10 mm, inductance 0.5 micro Henry.
L2-25 turns on Soviet Resistor MLT- 1, wire 0.2 mm (30 AWG), inductance 3 micro Henry;
L3-60 turns, wire 0.1 mm (38 AWG), diameter 3 mm, inductance 7 micro Henry.
RFC- inductance 10 micro Henry.

Transceiver was assembled in a box from TV tuner.

References: Polyakov V.T. : To the Ham about the DC Technique. Moscow, 1990.

Cable with Connector. Figure from the original manual.
Was reproduced at "U- QRP- C. Reference Book- #3

http://www.antentop.org/ mirror: www.antentop boon.ru

Page 6- 7
A dual-band transceiver with a crisp receiver and a clean SSB signal is described. It started its life as an investigation of the excellent S7C receiver described in EMRFD. This transceiver was specifically designed to use components that are easily available in TV and Radio spares shops. The receiver sports an above average dynamic range, very clean signal and noiseless performance. Although the components are easily available, and every detail about making it is covered here, this is not a weekend project. The design is elaborate and invites improvisation.

We decided to pursue the following rules in designing this transceiver:

► Use what is easily available. Very often, we find designs that look good but they use exotic parts like TUF-1 mixers that are simply impossible to get hold of in India and other countries. Instead, we have tried using those spares that are universally available.

► Keep impedances and gain low: Often, we try coaxing maximum gain out of a stage making it difficult to duplicate and stabilize. We chose to take only modest gain out of each stage, using extensive feedback to make the circuit stable. Most of the interconnections between modules are for 50 ohms termination. In fact, the rig was a number of discrete board connected using RCA audio cables and sockets before we hooked it all up together to work.

► No PCB. We directly solder the components over a plain copper clad board (un-etched PCB). It is an excellent way to experiment, physically robust and has a quick and dirty appeal. You can usually solder up a whole circuit as you think it out in a few minutes. See the pictures.

► Broadband. We wanted to be able to use broadband design where applicable. We have found that the television balun cores are an excellent and very cheap (about Rs. 2 per balun, that is 5 cents) way of making broadband transformers.

► Modest cost. While we didn’t want to use very expensive components. We didn’t want to compromise the performance either. You will see that we have used 2N3866 exclusively. This was because we found that the BF195/BF194/2N2222 series transistors available in the market were consistently inferior in the HF range and performed below their stated specs. The 2N3866 is commonly used in cable TV equipment and has a good HF performance: both as a low noise small signal transistor as well as driver up to 1 watt level. 2N3866 is expensive (about Rs.20 each, but well worth the expense). It is used in a number of critical places.

► Measure what you have built. We used a 12 volt 1.5A power supply, a frequency counter, a test oscillator (to measure the crystals and coils) and a high impedance voltmeter with an RF probe to test and measure the design. All these test equipment were homemade. The transmitter design did require a PC-based oscilloscope. It helped us identify the spurs and harmonics using the in-built FFT functionality. But now that the design is complete, just an RF probe and a 14MHz receiver are enough to align the rig.

► Quality over quantity. A better signal is preferred to a bigger signal. This is a 6 watt design that will work off a simple 12V, 1.5A supply (using a single 7812).

The ladder crystal filter

A good filter is central to the crispness of a receiver and the quality of the transmitter. There are two types of crystal filters possible, the lattice filter and the ladder filter. The lattice filter requires ordering crystals with 1.5 KHz frequency difference between them. This was ruled out, also procuring readymade filters from BEL India and other sources was ruled out as it is too expensive to do that. Instead, a ladder filter was chosen. The ladder filter offers results as good if not better than a lattice filter. However, the design is crucially dependent upon internal parameters of the crystals used. It is not possible to suggest any generic values for the capacitors to be used in the ladder filter. Rather, a method to measure each of the crystals and calculate the capacitor values has been worked out. We present this here. This design procedure will work only for 10 MHz crystals. 10Mhz is the chosen IF of our filter as the crystals are easily available and it sits comfortably between 7 and 14 MHz amateur bands. We have followed the Butterworth design methodology given in the new ARRL book ‘Experimental Methods in RF Design’.

The circuit centers around a four crystal ladder filter. Each lot of crystals from each manufacturer differs from the others. We will describe a way to experimentally calculate the values of the capacitors for the filter. You should probably buy 10 crystals and select 5 of them.
T1, T2, T3: trifilar 10 turns TV balun core, 30 SWG.
T4: bifilar 20 turns TV balun core, 26 SWG.
R1, R3, R4: DPDT small relays, for switching the bands.
R5, R8: BPDT relays with both switches parallel. For TX/RX switching.

All other coils are 6mm former with ferrite core and shield, using 26 SWG. Don't forget the shield.

You may reproduce this circuit diagram free of charge, as long as this notice stays.
CHAPTER 6: QRP TRANSCEIVERS

A Simple SSB Transceiver

VFO of the transceiver

For this purpose, construct the test circuit of figure 1. This is a simple Hartley-style crystal oscillator. You will require access to either a frequency counter or a general coverage receiver (ask a neighborhood ham to allow you to bring over your crystals to his shack and test them for few minutes). Mark each crystal with a number and solder it into the circuit (don’t use a crystal socket). Connect the 9 volt battery and measure the frequency. If you are using a receiver, find out the frequency on which the crystal is absolutely zero. Note the frequencies with the 33 pf capacitor in series and shorted. You will have a pair of frequencies for each crystal. Select four crystals with pairs of frequencies that match within 50-40 Hz of each other. A fifth (for the carrier) oscillator crystal should be within 100 Hz of the other four selected.

Calculate the value of the capacitors of Fig.2 like this:

1. Calculate the average frequency shift of the four chosen crystals as F (in KHz).
2. \(C1 = 21 \times F \), \(C2 = 40 \times F \). Choose the nearest available fixed capacitor. If you can’t find a fixed capacitor within 10% of this value, then parallel two capacitors to achieve the capacitance.

For instance, in the case of the first prototype, we measure an average of 5KHz of shift. Thus, the capacitors calculated were 107pf and 200pf. We used 100pf and two parallel 100pfs as a substitute for 200pf capacitors. These calculations are for 200 Ohms termination. For a complete discussion of this design method, you are referred to the excellent paper by Craver in the Communications Quarterly of 1993, Winter.

Broad-band design without Toroids

It was decided to use broad-band techniques where suitable and keep the circuit free of too many critically tuned circuits. We decided to investigate the TV baluns as cores for broadband transformers. The TV baluns as small ferrites as shown in the picture.

Almost all the broadband transformers are bifilar. Two (the modulator and the transmit mixer cum product detector) are trifilarly wound. They are simple to produce. Making a bifilar transformer:

► Take two lengths of 36 swg copper enameled wire.
► Hold them together. Tie one end to a nail.
► Twist the wires together so that they cleanly have about 8-10 turns per inch.
► Check that the wires are evenly twisted (although there will be more twists towards the ends).
► If the balun core is mounted on a PCB, cut it out with a cutter and remove all the original windings.
CHAPTER 6: QRP TRANSCEIVERS

A Simple SSB Transceiver

Pass the twisted pair through one hole to the other side, bend the wire back and pass it back through the other hole (like a U turn). This is one turn, like this, make similar 10 turns.

Cut out the remaining ends of the windings leaving about half an inch of the twisted pair on each end.

Scrap the enamel off to about quarter inch, and tin the leads.

Using a VOM at low ohms setting, identify the two separate windings of the twisted pair. If we call the two wires X and Y, each will have two ends A and B. This will have four ends AX, BX, AY and BY. Short AX and BY together and use this as the center point of the transformer in the circuits. Use AY and BX as the two opposite ends of the transformers.

Making a trifilar transformer is similar, except that you have to use three wires twisted together. Separate out the three wires as before, use the first two as described above, and the third winding as the secondary.

IF sub-system

The crystal filter and its associated IF circuitry is shared between the receiver and transmitter. Although the crystals are inexpensive enough to be able to afford separate filters for the transmitter and the receiver, we noted that each filter would have a different center frequency. This would make zero-tuning difficult for SSB operation. Therefore, it was decided to share the same crystal filter, carrier oscillator and the VFO between transmit and receive functions.

The crystal filter requires 200 ohms impedance matching at both ends to provide the correct bandwidth and low ripple. A regular practice among hams is to strap a resistor of approximately the same value as the terminating filter impedance across the input and output ends of the filter. This is incorrect. This looks like a resistor that is paralleled with a reactive impedance of the rest of the circuitry attached to the filter. When the crystal filter is not properly terminated and sees reactive termination, ripple and ringing are introduced. This will spoil the crispness of the receiver and spoil your on-the-air quality.

The crystal filter is terminated on both sides by ‘strong’ RC coupled amplifiers based on 2N3866. This is slightly unusual. The 2N3866 is used mostly as a VHF power amplifier. It has excellent low-noise characteristics, good gain and using it as a small signal device is now an established practice. The 2N3866 is an expensive transistor. It costs about Rs.20 in the open market. We think it is a good investment.

Using RC coupled broadband amplifiers makes the IF system a ‘no-tune’ affair. The output of the post-filter amplifier is coupled to a two diode mixer. The two-diode mixer uses a broadband bifilar wound transformer. It is next to impossible to get toroids in India. We have evaluated using TV baluns as substitutes for toroids. These baluns are available at most TV spare shops.

Most designs we have studied couple the RF input to the diode detector through the transformer and inject the BFO at the center of the transformer. This is a wrong practice. The diode mixer requires a minimum of 5mW of energy from the transformer input to operate properly. There should be enough energy to switch on both the diodes. This means about 1.2 v peak voltage. The received signals are rarely this level. As a result, the product detector operates like a regular envelope detector and the diodes act as distortion devices to mix the BFO with the signal. The correct configuration is to inject the BFO across the transformer.

An unusual approach is taken here. The IF amplification gain is just enough to maintain good noise figure and recover the losses in the ladder filter. We measured almost 10 dB loss in the filter.

http://www.antentop.bel.ru/ mirror: www.antentop.boom.ru
CHAPTER 6: QRP TRANSCEIVERS

The Receiver

The receiver is minimal. By keeping the number of active devices low (3 devices between the antenna and the audio amplifier), very good fidelity is achieved. The circuit is kept at a low impedance and broadband everywhere except the front-end. This helps in stability.

The front-end uses a low-noise FET. We have used a BFW11 (because the local component shop ran out of BFW10). They have slightly different characteristics. Almost any FET can be used if it is biased properly. The FET should be biased for exactly half the pinch-off voltage. Wes Hayward (W7ZOI) has described the proper way to bias a FET Mixer for proper operation:

► Short gate and source and measure the current that flows through a 560 ohms resistor connected to +12V through the drain. This gives the exact Idss.

► Place a 10K resistor between the source and the ground. Keeping the gate grounded and the drain still connected through the 560 ohms resistor, measure the voltage between the source and the ground. This gives you the pinch-off voltage.

► The FET has to be biased such that the voltage on the source is exactly half the pinch-off voltage and there is half of Idss current flowing through the FET. Such a scheme assures you that the FET is driven between pinch-off and maximum drain by the VFO injected at the source. This gives the proper switching action for the mixer to operate as well as maximum gain. We measured the pinch-off voltage for BFW11s as 2.1 volts and Idss as 5mA. A standard 1K resistor at the source gives the proper bias.

It should be noted here that we first tried a double balanced diode ring mixer at the front-end. It has a number of spurious responses that literally made it impossible to use the receiver. We tried to properly terminate the diode ring mixer by inserting attenuators between the mixer and the Ladder filter’s pre-amp. It didn’t cure the problem. When we changed to the FET mixer, the noise figure improved, the receiver’s dynamic range, while unmeasured, was never found lacking in the last one month of extensive usage at VU2PEP.

The output of the IF amplifier is detected in a balanced detector using just two diodes. Here gain, we break a common myth. You will see most of the HF receivers employing a two diode balanced detector with the BFO fed to the center tap and the incoming signal applied through the primary winding of the detector transformer. This is wrong. The signal applied through the primary winding should be strong enough to switch the diodes on and off.

The balanced detector of the receiver also doubles up as the modulator out of the IF string during the reception mode.

The Transmitter

The transmitter starts with the modulator using a 741. There is a three resistor network that biases the electret microphones. We use a Phillips ‘walkman’ style headphone with built-in microphone for our work. The electret microphone requires a bias that provides 5V as given by the circuit.

The balanced modulator also had two 22pf trimming capacitors for nulling the carrier. They were later found unnecessary (as long as both the diodes are purchased from the same roll) and removed. If you do find balance a bother, feel free to add a 22 pf trimmer to one side and a 10 pf fixed to the other side as indicated in the schematic.

The output of the balanced modulator is routed to the common IF amplifier through a buffer amplifier using a BF195. This serves to keep the carrier leak from the modulator out of the IF string during the reception mode.

The balanced detector of the receiver also doubles up as a mixer during transmit. It is important to balance out the VFO energy at the output by setting the 100 ohms trimmer properly. We noticed a 50mW residual out-of-band output from the transmitter when the VFO is unbalanced. The power chain is an interesting broadband amplifier. You can use this in virtually any transmitter of up to 7 watts (and higher with more than 12 volts supply to the final stage). Three stages of broadband amplifiers feed an IRF510 PA. It is an interesting twist that the driver 2N3866 transistors cost more than the IRF510! The IRF510 should be biased for 80mA of standing current during transmit with the microphone disconnected (no modulation) and carrier nulled by the trimpot of the balanced modulator.

http://www.antentop.bel.ru/ mirror: www.antentop.boom.ru
CHAPTER 6: QRP TRANSCEIVERS

Construction

We heavily recommend constructing over pieces of un-etched PCBs. They are cheaply available everywhere. See the pictures as a guide to component layout. We recommend the following rules:

► Keep your leads short. Short connections are more important than components that are at right angles to each other. What might look neat to you might look unstable to the RF design.
► Keep the outputs and inputs isolated from each other. We have taken care to keep the high impedance points down to a minimum. But still, maintain design hygiene.
► Make one module at a time, test it completely, then move to the next one. Construct the transceiver in the following steps:
 ► Make the VFO. Check the RF output using an RF probe. Check the stability on a regular receiver or a frequency counter. With the tuning capacitor fully closed (the plates inside each other), set the trimmer so that the VFO frequency is exactly 3.9995 MHz (keep 5 KHz margin at the band end)
 ► Make the BFO. Check the output on the RF probe.
 ► Calculate the ladder filter values and make the IF strip along with the audio preamplifier.
 ► Connect the BFO, VFO, IF strip and an external audio amplifier together. When you power on and attach a piece of 2-3 meter long wire to the input of the IF amplifier you should be able to hear the atmospheric noise. Tune the BFO coil by fully screwing the slug in and then slowly tuning it out until the IF noise sounds right (not too shrill and not too muffled).
 ► Wire up the receiver mixer, connect the VFO. Peak the mixer output and the RF input coils for maximum output. Then tune to a weak signal on the band and tune for the best signal. Be careful to tune for best quality of signal and not for maximum loudness. Take a break, spend a day or two listening to the band with your receiver. Nothing is more enjoyable than using a crisp receiver that you have homebrewed.
 ► Wire up the modulator. If you have an oscilloscope, you can check the modulation. The modulated output will be too low for you to be able to measure on the RF probe.
 ► Wire up the linear chain. DON'T solder the IRF510 yet.
 ► Put the transceiver in transmit mode. Whistle into the microphone and peak the transmit mixer output coils for about 6 volts peak RF voltage on the probe at the 56 ohms resistor where the gate of the IRF510 would be.
 ► Solder in the IRF510. ATTACH A DUMMY LOAD. We used four 220 ohms two watts resistors paralleled together.

A Simple SSB Transceiver

► Keep the bias trimmer totally down towards zero. Attach VOM in series with point X in the power amplifier. Apply power in transmit mode and slow increase the bias until you have 80mA flowing through the IRF510.
► Connect the RF probe across the dummy load.
► As you whistle, You should get about 20-24volts of peak RF on the probe. When you pull out the microphone from the jack, the RF output should drop to complete zero. What if your transmitter is unstable?
 • Don’t curse your fate. All transmitters start out as unstable beasts. Relax.
 • Start disconnecting power from the stages starting from final IRF510 and working backwards. When you have located the unstable stage, there are a number of things you can do to fix it.
 • Try increasing the value of the 10 ohms resistor used in the emitter degeneration OR
 • Strap a resistor of about 1K across the output transformer of the unstable stage to ‘load’ it.
 • Move the linear amplifier away from the rest of the circuitry.
 • Redo the board. This time spread the stages out. We guess that the linear chain should occupy about 6 inches of space, all laid out in one line.

Substitutions

The BF195 transistors can be substituted with any other HF transistor like 2N2222 etc. The 2N3866s are best not substituted. The circuit works with slight increase in the noise figure if BF195 or equivalents are used in place of 2N3866s in the IF stages. The output power on the transmitter absolutely needs the 2N3866s. Substituting them with other switching transistors didn’t give good performance.

The IRF510 should not be substituted with any other transistor. The other IRFs, though rated higher, have higher input capacitance which makes them a bad choice for 14MHz operation.

The LM380/LM386 can be substituted with almost any other audio amplifier. Our first amplifier was Cambridge SoundWorks Sound System. If you turn down the bass, they are an excellent system for the shack. We have tried a TBA180, an LM386, an LM380 and even a glow-bug guitar amp. Feel free to experiment.

Final Notes

The first contact we made using this rig was DF6PW. He reported us 57. Within the first evening we had worked four continents. The rig is regularly used at VU2PEP. People are often surprised at how the transmitter quality is ‘just like a commercial rig’. Many refused to believe that it is a seven watt rig.

72/73!
QRP TX
This is my own variation of the triode/pentode family of glowbug transmitters. It features a Pierce oscillator which runs continuously during transmit to avoid chirp. The PA is grid block keyed and since the negative is there, fixed bias. The bias setting is not critical, grid rectification will provide additional bias and form a sort of regulation network. The PA is biased into class C, adjust bias for about -24V at keydown, measured at the junction of the 3 resistors. Plate current should be around 35-40 mA when fully loaded, depending on crystal activity. Power output is 5 to 8W at 12W input which is a hefty 66% efficiency (not counting the screen current) and a nice blue glow comes from the innards following the keying. My original plan was to use a Pi-L tank to meet the modern demand of spectral purity but with loaded Q higher than normal, not really needed in this power class. The idea with grid blocking was to enable me to use my keyer without any relay in between. It has a negative keying line with a 250V filledstate device behind. When tuning up, mesh the loading condenser C2 fully and dip the plate with the tuning condenser C1, quickly! Plate current should dip down to around 20 mA. Unmesh the loading condenser C2 until the current just stops rising or maximum 40 mA. Redip the plate. Repeat until the dip is shallow, a few mA. Do not tune for maximum output, the PA is not neutralized and will run beyond maximum tube ratings if this is done. If maximum output goes over 9W or overloaded plate current over 40 mA, lower the plate supply or back off the grid condenser a little or mesh the loading condenser a little. The plate current should not exceed 40 mA fully loaded (ah, well, the tube is still available from Russia :^), maximum allowed cathode current is 50 mA for this tube. I have installed a 100 mA meter in the wire going to the plate of the PA. The glowbug is free from chirp and runs smooth. Keyline filtering seems to be unnecessary but check the envelope if you are driving a power amplifier with it. I have found that the grid condenser could be replaced with a 47 pF fixed for FT243 rocks and 15-22 pF for modern tin can rocks.

T/R switch? I use a rotating switch with 3 poles, one for switching the antenna, one for+300V on/off and one for the receiver mute. If you use a regenerative tube receiver, antenna switching isn't really necessary, use a separate short wire as RX antenna or couple lightly to the TX tank. The regen grid leak and coupling condenser should be adjusted for proper recovery between the code elements (full QSK) or perhaps between words. Only a simple rocker for the +300V is needed.

Spotting? Well, my Heath SB301 gives this away for free. Set the RX in receive mode and engage the T/R switch without keying. You will hear the triode oscillating in the receiver. Tune it in and reset the RX in standby mode again. Advantage, gridblock!

Sidetone? Many ideas here. I use my new keyer's sidetone. My previous keyer did not have sidetone, instead I used my TS-830 as a growler, he, he... Or use a small 50 mA lamp in series with the PA plate as a sidelight :-), at least at QRS speeds.

Circuit layout? Not very critical. Only one tuned element except the rock is present. As a starter, keep the triode circuit on one side of the tube socket and the PA section on the other. Use the middle stud on the tube socket as a common grounding point if there is one. Keep the rock at least 2 inches away from the tube envelope to avoid heating it. The schematic does not show the heater, ground one side and decouple the other side at the socket with a 0.01 ceramic condenser. Heater voltage is 6.3V. If it exceeds 6.6V when loaded by the tube, add series resistance until below for maximum tube life. My own is built in a aluminum cast box with all circuity inside except L1, C2 and the output choke. If you use loads other than 50 ohms, some fiddlin' with the tank may be called for. You can also replace the pi tank with a link coupled parallel tank. For data and pinout on the tube, see ECL82 tube data
(http://www.algonet.se/~janax/secl82.htm).

Running rock bound? Not easy. You call CQ. Don't wait on the rock QRG for others unless others knows about you. Sometimes you hear another station calling CQ near your rock QRG. Give him a try, he may hear you. It might be easier to use the QRP QRG 3560 kHz. In US, 3579 kHz is a common rock QRG. Use a 3579R545 kHz color burstie rubbed down a tad. In EU at night, most glowbugs seem to stay around 3560-3565 kHz.
AM? Well, I have not tried. You gotta reduce input power a lot. 2-3W carrier output would be appropriate. Feed plate and screen through a modulation iron of around 7-8 kohms secondary impedance. Avoid AM on 80M during dark hours in EU, there ain't room enuff.

A little warning: Lethal voltages are present in this circuit. Be careful. Do not omit the output-to-ground choke. The -100V present at the key is not dangerous if the resistor values in the schematics are used and are of adequate quality and voltage rating.

The circuit could use a 6GW8/ECL86 but the high mu triode section is a tad hard to tame. It requires less bias voltage. I'll try another glowbug with this tube but with a Colpitts oscillator instead. Stay tuned, I will make a 6GW8/ECL86 bug also, perhaps after I have finished the Eurobug (EL83+EL34).

This glowbug has been on air for some time now and the reports are good, no chirp and no clicks. "Very good sound" is the normal report.
At QRP rubric at Antentop 01-2005 I use stuff from old Soviet QRP magazine published by the U-QRP-C at 1991. It was named "U-QRP-C. Reference Book-#3," you can see its cover at the right. The schematics, which were published there, are very interesting till now.

The simple QRP TX used two FETs was published at "U-QRP-C. Reference Book-#3," page 4. I have done the TX, it worked pretty well! I have tried it in several ways. Pair low power FETs (300 MHz, 300 mWt) did very good job, near 200-300 mWts output without problem. I put in parallel up to 5 the same transistors (instead output transistor), it gives near 1 watts, the transistors were without a heat sink. Of course, good results were obtained at first FET (300 mWt, 300 MHz), second MOS, 300 MHz, 3 watts. I have near 2 watts at 24 Volts.

If instead C2 you use a variable capacitor, you can use quartz for 3500 or 1750 kHz. Of course, the transmitter works good at another bands, for 30, 20, 15 and 10 meters, however, the power is dropped. At 80 and 160 meters the TX has good power and clean tone. I did experiments with the TX and RF-generator, I removed the quartz, and put output of the generator to clips 'VFO.' So, I have got very nice small TX, that worked very good.

Data: L1= L2: diameter 30 mm, winding length 35 55, 15 turns, L2 tap from middle, L3 3 turns above center L2.

I strongly recommend you try the simple TX.
73/72! I. G.

Figures of the TX are reproduced from "U-QRP-C. Reference Book-#3.'
CHAPTER 8

QRP RX
This is my October regenny as it looks right now. It works but more adjustements must be done before I'm happy with it. It's based on the 1950 ARRL handbook design. The original had plate voltage regeneration control but I found out quickly that the throttle condenser approach is the correct way to go. I did not have an interstage transformer so I took a small power supply choke instead.

I also added a volume control, at 40 plate volts, the output transformer into 16 ohms headphones, my ears nearly blew off.

First I heard nothing, then I got Deutsche Welle in on the 41 meter band. After that I found that I had the dummy load connected...

Credit Line:
http://www.algonet.se/~janax/myregen.htm
Simple Regenerative Receivers

The simple regenerative receivers were published at “U- QRP- C. Reference Book- #3,” page 6. I have done the receivers, they work pretty well!

73/72! I. G.

DATA:
Transistor can be any RF FET. Output transformer can be any output transformer from a transistor radio. L1 depends on used band. I used collections inductors wired at form diameter 20 mm with wiring length 25 mm. For 10-20 meters, L1 contains 9 turns, L2 contains 2 turns near cold end L1. For 20-40 meters L1 contains 15 turns, L2 contains 3 turns near cold end L1. For 80-160 meters L1 contains 45 turns, L2 contains 10 turns near cold end L1. Antenna capacitor 120-pF may be 2-120-pF in value.

Use the two-tank circuit at input clips of the receivers. It gives you cleaning from unwanted stations and provides your thin Air.

Data for L the same as for above receiver. Tap made from 1/6 parts of the L. Resistor on *51 Ohm should be pickup for used band (or, the same, used L). Inductor for 2.5 mH is home brew, it contains 200 turns onto a ferrite ring 20x12x4 mm, permeability 600. Transistor used in regenerative stage should be good RF transistor with f = 300 MHz, and gain =100 and more. Any audio transistors can be used in audio amplifier.

Hope, you will have fun with the receivers!

73! Igor, VA3ZNW

Figures of the receivers are reproduced from “U- QRP- C. Reference Book- #3.”

http://www.antentop.org/ mirror: www.antentop.boom.ru
CHAPTER 9

QRP PA
QRP PA for the 10 meters

The QRP PA was published at "U- QRP- C. Reference Book- #3," page 3. I have done the PA as well as for 10 meters as well as for others high (20-12 meters) amateurs bands. It works well! It gives near 1 watts to 50(75) Ohm load.

73/72! I. G.

DATA (for 10 meters):
L1, L2- RFC, 10 micro Henry.
L3- 7 turns, wire diameter is 0.7 mm (21 AWG), form diameter is 7 mm (used old inductor from IF tract of tube TV, the inductor has a ferrite core), tap from 2 turn from cold end;

L4- 5 turns wire diameter is 0.7 mm (21 AWG), form diameter is 7 mm (used old inductor from IF tract of tube TV, the inductor has a ferrite core);

T1- f= 300 MHz, gain 100
T2- f= 600 MHz, gain 50, 3 watts output. Need be installed at a small heat sink.

Figure PA is reproduced at "U- QRP- C. Reference Book- #3."

Early 1991 the PA with some modifications was published at different References, one of them:

Polyakov V.T. : To the Ham about the DC Technique. Moscow, 1990.
KEYS for QRP
CHAPTER 10: KEYS for QRP

Keys for QRP- expeditions

by Igor Grigorov, RK3ZK

The two articles were published at SPRAT, the journal of the G-QRP – C # 114 and # 115 accordingly. However, I think, the keys will be interesting for all amateurs.

Telegraph key for a QRP-expedition

It is a problem what a key to use in a QRP-expedition, hand or electronic. An electronic key does not provide a good operation at a QRP-expedition for the following reason. At first, it need in an external feeding for it, at second, as rule an electronic key made on the CMOS (Complementary Metal Oxide Semiconductor) chips is undergo of dampness. From dampness it would leave out of operation in the most improper moment. A standard telegraph key, usual for routine radio amateur activity, is complicated in application in field conditions because the key should be reliably fixed to any fixed base. The matter is not always possible in a field QRP-expedition. Often expedition key is keeping in one hand (or even on a knee) and by other hand working on it. Certainly, it is very inconvenient for job in the ether and rate of transmission is very low in that case. My special self-made a hand telegraph key has no the defects. Fig. 1 shows drawing for the key.

It consists of from a rectangular part of PC-board (item 1), which is connected to “ground” of a transceiver and a keying unit (item 2), made from a copper thick wire in 3 mm diameter or #11 BWG, or # 9 AWG.

At operating in the ether the rectangular part places in a hand, on a knee or on any fixed basis. The other arm does keying. Ever it is possible to paste this slice of PC-board with help of an adhesive tape to a transceiver case or to floor of a tent. This key was used at operation from any possible most inconvenient positions. For example, laying in a tent, and even laying in a sleeping bag. Certainly, the keying rate is not so high, up to 60 symbols per one minute. But it is quite sufficient for operation from a QRP expedition, where the high speed do not use usually.

Electronic keying for an electronic key

When I used an electronic telegraph key made on CMOS chips during my QRP-expedition, I found out that the key is very sensitive to dampness. Even when I covered a PC-board of the key by paraffin (it is possible easily to delete paraffin with the help of hot water and after that with petrol, if a repair is necessary), the failures in activity of the key continued.

Also I found out that small drops of water influenced on key operation, i.e. the drops covered contacts of the key’s manipulator and go to false operation.

Only reed relays (magnetically operated with hermetically sealed contacts) helped me to solve that problem and make reliable work of the electronic key in field operation.

The reed relays were placed on the PC-board of the automatic electronic key, near keying “dot” – “dash” chip. I used old reed relays, taken from burned old relay of a telephone station. Fig. 1 shows the scheme of the unit. The PC-board of the automatic electronic key with the reed relays was covered with paraffin. Manipulator of the key was placed outside the key’s body. The reed relays had a self-made windings. Each winding contained several thousands turns, coiled by copper wire 0.1 mm in diameter or #36 BWG.
Winding of reed relay consumed current near 3-4 mA at 12 volts of key power voltage. Such small current did not load much key battery.

Figure 1
The electronic telegraph key, consisted of such electronic keying unit and PC-board covered with paraffin, reliably works even while raining. Also the key was serviceable in the morning when both key PC-board and manipulator were covered with dew.
Home Made Key for FT-817

Yuri Murashev, RX3AEW

Sorry for pictures' quality – they were taken by my cell-phone. The design of the key is simple, see Figure 1. Three copper areas are cut on a small PC-board. Two upper ones are for ‘dot- dash,’ rest below is ‘ground.’ Copper strips with thickness in 0.5 mm are soldered to each dot- dash area, a metal end from a glass fuse is soldered to the ground area. Plastic buttons (special dash pots used at furniture) are glued to the copper strips. The PC board is placed to a little nice black box made from a metal.

The box with key board inside the one is fastened by a screw to transceiver’s push-to-talk switch. The screw is screwed instead a screw (too much ‘screws in one sentence!) that early was hold a clip. The push-to-talk switch has not flat surface, so a pillow made of polyurethane is placed under the ‘black box.’ Key wires are into push-to-talk switch cable.

While QSO the push-to-talk switch is in the left hand, by the hand do turn RX/TX, keying do by the right hand.

73/72!
CHAPTER 11

QRP STORY
QRP beyond belief
by Igor Grigorov / RK3ZK

The article was published at SPRAT, the journal of the G-QRP – C # 114. However, I think, the keys will be interesting for all amateurs.

Work on QRP is wonderful when with only several watts of power to do a DX QSO. But the surprise is especially great if a radio amateur does not know that he works on QRP... later he looks into his log and does not believe it! About such improbable work on QRP I want to tell.

It took place on the 10th of December 2001, during the QRP expedition on Ai - Petri plateau. This expedition was held in honor of the centenary of Marconi’s First Transoceanic radio contact. The UR-QRP Club arranged the expedition. The call EN100GM was used. We used an old military Russian made radio R - 143. It provided 8 watts RF- power at 1.8 to 18 MHz. An ATU (Antenna Tuning Unit) (see reference [1]) was used with the military transceiver. Fig. 1 shows the scheme for the ATU.

By mistake, one of the operators connected our transmitting antenna to jack J4 instead of jack J2. In other words, our antenna was connected to R4, the dummy load, installed inside the ATU. The dummy helped to do right matching a transmitter with the ATU.

So, during several hours we worked in the Air with the antenna, connected to R4, not to the transceiver. It is beyond belief, but we made 21 QSOs! One QSO was made on a range of 40-m, three QSOs were made on a range of 17-m and the others 17 QSOs were made on a range of 20-m. Only casually the mistaken connection was detected when we could not make QSOs on a range of 80-m... Tab. 1 shows the page from EN100GM log with the QRPP QSOs.

www.antentop.bel.ru
Certainly, when tank L2C1 (see Fig. 1) is tuned in resonance with the input frequency, a high RF voltage is on the tank, and a little part of the RF energy from the tank L2C1 is induced on the dummy load R4. Hence, a small RF voltage is presence on R4, and a very little power goes in the antenna. Of course, a little RF energy also is induced on current transformer T1 (see Fig. 1). So, the RF-transformer shows a RF current.

When we stayed on receiving, I think a little part of RF energy from R4 was induced to L2C1, and from L2C1 goes to input of Р-143. This military radio station could provide quite a good reception even at very poor radio signals.

After our expedition, when I have arrived home, I have measured the level of the RF power what could be induced on the dummy load, R4.

When I run 10 watts in to the unloaded ATU, I obtained, that it was 0.5 – 0.8-V RF across the dummy load. Hence 5 – 15 milliwatts were dissipated by the dummy load. When an antenna was connected to the dummy load the induced RF power shares with the antenna.

Ooops, we worked while several hours with several milliwatts in our antenna! Four hams, UU4JCQ, US1REO, USIRCH, RK3ZK, observed the wonderful work.

Reference
September 13, 2002.

The day before yesterday I decided to hang my ZL-antenna for 20m in another direction - and so sad it was for me, fixing the last point I broke director wire. My antenna made of D6mm antenna-rope had been already used for 2 years and I had no any desire to prolong it's term

Yesterday I switched to two alternative dipoles instead.

Today in the morning I started tuning my new 2-el Beam of D3mm bi-metall directed North-South strictly. On 20m SWR that's 1point2. And just after it I tried SWR on other high bands. On 10m band the SWR was 1point4. And on 15m band [CW] SWR surprised me with 1point1. I'd just only checked SWR not changing tuning from the middle of [CW] on 15m and switched on my soldering iron on in order to change all temporary contacts for cable [SO-239]s. Frequency, once established, was the same.

Early morning. The band's not opened yet. The sweet noise sound pouring from speaker-phone. I've switched off one of the dipoles and the other was still wired to transceiver. Still soldering. And just that time I'm hearing on that frequency someone asks for "QRL?" and in a half a minute I hear "CQ CQ de 9U0X".

I switch to another antenna - that was [Delta for 40m] and lost him, and while immediately returning to the dipole I have RST 539. I'm hurring to catch my luck, trying to repair my hand-made connections, but wires were already cut for soldering and so it's a great deal to screw them all once again. I have two bulks of wire under my legs, and on my knees, so hard to screw because the coax-cable is so thick and hard. So I connect the antenna cables together manually using the newspaper as isolator!!

When the second dipole added the signal up tp 559. I ask him at QRP, he doesn't reply, and QRO I don't use [interestingly].

Three minutes after other HAM's came and one Italian station invites me SKED 18.085 kHz. My [delta-loop] hear nothing and Beam SWR - unlimited. I used my 20m Beam and received RST 559 in answer!!!! And that pal from Italy asked SKED 24 MHz once more. I follow them. Delta-loop is empty and Beam SWR the same as on 18MHz. I call and have 559 in answer!!!! QSO at 08.35z and 08.38z.

9U - Burundi - my new country reached on QRP (204).

Credit Line: : http://ruqrp.narod.ru

International QRP frequencies:

<table>
<thead>
<tr>
<th>Band</th>
<th>Frequency, kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td>CW - 1843</td>
</tr>
<tr>
<td>80</td>
<td>CW - 3560 SSB - 3690</td>
</tr>
<tr>
<td>40</td>
<td>CW - 7030 SSB - 7090</td>
</tr>
<tr>
<td>30</td>
<td>CW - 10106</td>
</tr>
<tr>
<td>20</td>
<td>CW - 14060 SSB - 14285</td>
</tr>
<tr>
<td>17</td>
<td>CW - 18096</td>
</tr>
<tr>
<td>15</td>
<td>CW - 21060 SSB - 21285</td>
</tr>
<tr>
<td>12</td>
<td>CW - 24906</td>
</tr>
<tr>
<td>10</td>
<td>CW - 28060 SSB - 28360</td>
</tr>
</tbody>
</table>

http://www.antentop.bel.ru/
On 25 May 2003 I worked the WPX-CW contest. I started calling CQ-WPX at 0000Z but was only answered about every fifth time. After about an hour I had only 18 QSOs on 80 meters. I started calling CQ just to see how the propagation was. At 0120Z TO5AA was 559. Finally I was able to work Europe a bit.

Yesterday, before the WPX-CW contest I heard someone call CQ. The signal was right at the noise level, so it was impossible to copy. Even my 500MHz filter didn’t improve the signal. I fine tuned and the RST finally got up to 339 and I recognized part of his call sign, 3?2N?, but with QSB. He continued to call CQ but had no response. The RST got up to 559. The call sign was 3D2NC. I gave him a call. No answer. I called again. He said RPT AGN, but there was a European station calling him and he went back the European. On my third attempt he finally came back to me. Sadly he gave me the standard RST 559 for my QRP signal.

At 1101Z I heard no body calling. I waited for a few minutes more. Then a few sations from Siberia and Europe started calling. They probably heard the pile-up for 3D2NC, whose signal peaked at 569. After about 30 contacts his signal dropped and I couldn’t hear him any more. I was interested in how well he was heard in Siberia so I sent an e-mail to UA0_____ asking how well the European station was heard there.

On 20 meters signals from far Europe were 559 and on 15 meters they were 579. The frequency of 3D2 is free now. Is somebody calling QRL? I waited and heard CQ CQ de A3JJ A3JJ K. Immediately a few stations called him. A3JJ answered a Dutch station and giving "... de EA3JJ". After first QSO the pile-up disappeared.

Today I heard RZ6HX/QRP on 21 MHz.

72! Alexei, UA4ARL/qrp

On 25 May 2003 I worked the WPX-CW contest. I started calling CQ-WPX at 0000Z but was only answered about every fifth time. After about an hour I had only 18 QSOs on 80 meters. I started calling CQ just to see how the propagation was. At 0120Z TO5AA was 559. Finally I was able to work Europe a bit.

Yesterday, before the WPX-CW contest I heard someone call CQ. The signal was right at the noise level, so it was impossible to copy. Even my 500MHz filter didn’t improve the signal. I fine tuned and the RST finally got up to 339 and I recognized part of his call sign, 3?2N?, but with QSB. He continued to call CQ but had no response. The RST got up to 559. The call sign was 3D2NC. I gave him a call. No answer. I called again. He said RPT AGN, but there was a European station calling him and he went back the European. On my third attempt he finally came back to me. Sadly he gave me the standard RST 559 for my QRP signal.

At 1101Z I heard no body calling. I waited for a few minutes more. Then a few sations from Siberia and Europe started calling. They probably heard the pile-up for 3D2NC, whose signal peaked at 569. After about 30 contacts his signal dropped and I couldn’t hear him any more. I was interested in how well he was heard in Siberia so I sent an e-mail to UA0_____ asking how well the European station was heard there.

On 20 meters signals from far Europe were 559 and on 15 meters they were 579. The frequency of 3D2 is free now. Is somebody calling QRL? I waited and heard CQ CQ de A3JJ A3JJ K. Immediately a few stations called him. A3JJ answered a Dutch station and giving "... de EA3JJ". After first QSO the pile-up disappeared.

Today I heard RZ6HX/QRP on 21 MHz.

72! Alexei, UA4ARL/qrp

The RCC had a contest on 26 April 2003. Propagation was poor for both short and long skip, but I did make 150 QSOs. However not many contacts were QRP. After the contest I listened to the upper bands without luck. 15 meters was dead as well as 10 meters. I listened to HF in the evening and it was dead also.

The weather in Volgograd is very unstable now. Friday the high was +19 C, Saturday it was only +5 C.

Victor, RZ4AA, shares QRP experiences with me. He said "After every contest I always hear HF. Usually propagation is better than before the contests. The contestants have gone back to their other rigs and then it is possible to work 5 watts QRP DX without any problems." Last weekend he had about 20 QRP QSOs into South America (LU, CX and PY) using 5 watts and dipole antenna up about 5 meters. He worked one LU station who was also running QRP and they both exchanged RST of 579!

I next listened to 21.00 MSK. I heard the Switzerland contest. The propagation was improving some now. I tuned to the DX window and heard someone transmitting "...ON /QRP. His RST here was 589 and he was talking to Belgium, but I couldn’t hear the Belgian station. He told the Belgian station that he was using a K2 txcvr. When he said 73 and gave his call sign, I was surprised to hear VK9XK! I gave him a call and he came back to me on the first try. He gave my RST as 599. His QTH was Christmas Island. Great FUN!

72! UA4ARL/qrp Alexei Rusakov

Credit Line: : http://ruqrp.narod.ru
CHAPTER 11: QRP STORY

QRP TALES

By Alexei Rusakov, UA4ARL/qrp (RU-QRP # 005) ua4arl@vistcom.ru

Continued from ANTENTOP- 03-2003

1’st March, 2003

The ARRL phone contest was today but propagation was bad into Volgograd. Even the CW portions were quiet. I checked all the CW portions of the bands this morning and figured that everyone was on SSB. In the evening I went back to check the condition of the bands but 21.060, 24.900 and 28.060 were already gone. While in 15 meters I slid down the band and heard some Europeans. LP’s were 549 - 559 while HP’s were no louder than 589 here in Volgograd. Around 21.006 there was someone that had a 559 signal with 3 or 4 stations calling him. However, he didn't give his call sign while I was listening.

I changed antennas from a North delta to an Africa oriented 2 element and the signal went to 579. That is a good sign, I thought. Suddenly DX starting sending CQ CQ C98RF UP. I tuned the signal in with anticipation. I went up 1.5 kHz and called, but without the /QRP. I must have been the only one that answered him because he came back to me on the first try! I then told him that I was running QRP.

After our QSO was over sounded the orchestra of calling stations on the same frequency. I sat and enjoyed listening to the pile-up of DXers. Easy propagation for about an hour and a half then the signals went down to 459.

72! UA4ARL/qrp Alexei Rusakov

Credit Line: http://ruqrp.narod.ru

October 5, 2003. Robin, M5AEF, had an unique CW QSO with RX3BO from Moscow at 17 meters using only 1 watt output. You say ‘it is nothing especial for 17 meters’, but what do you say, if you know that Robin did not use any antenna?

Yes, Robin was doing a calibration for his FT- 757, and this one was connected to a dummy load. An antenna did not connected to the transceiver at this time, the antenna was connected to monitoring receiver, that does control for quality of the output signal from FT- 757. So, Robin heard Anatoly, RX3BO, from Moscow and they had QSO with each other. Robin had received 559 from Anatoly for his dummy- load antenna!

Some minutes later Robin connected his usual 1,5 lambda antenna to the FT – 757 and did QSO with RX3BO. Robin had received 579!

Don’t say me that there are no miracles!

With the best regards!

Oleg ("Master-72") V.Borodin

72! de RV3GM (UE3QRP)

Credit Line: http://groups.yahoo.com/group/ruqrp/

Dear Friends,

you can read about a QRP- QSO without antenna also at ANTENTOP – 01-2003.

72/73! I.G,
CHAPTER 12

ANTENNA TOOLS
CHAPTER 12: ANTENNA TOOLS

Tool for Pulling Guys

For several years I use to a home-brew tool, that I made by myself, for pulling guys. I made it of 8 mm of steel plate. The tool holds any guys, for example, bimetal of diameter of 4-6 mm, steel rope, wire rope. Picture shows how the tool holds the guy.

A winch is attached to the hole in the tool and placed by the place where the guy is fastened.

You can very easy move the tool onto a guy. The tool does not bite a guy at pulling. When a guy has been pulled, the tool removed by unscrewing the bottom plate.

Everyone can design the tool to needed sizes, proceeding from own needs. Force of capture is defined by a difference of shoulders of cross levers to which fasten plates. Plates have longitudinal gnawing-through at the place where it hold a guy.

Recycling Chokes for the LF-Band

rsgb_lf_group@blacksheep.org

Urban Ekholm, SM5EUF
urban.ekholm@hem-pc.bip.net

When experimenting on the LF-band chokes with inductances of some mH are often needed. They are not so easy to get in these days. Those in the junk-box from the tube era are often quite big.

Do you have low-energy lamps that are not working any more? Before giving them away to recycling do the following:

Carefully disassemble the electronic part with a screwdriver. Inside there (among some other things) is a choke with an inductance of 1.8-17mH (depending of the power and the make of the lamp). They chokes are very small, approximately 12x12x15mm. I have measured the Q of some of them and it was between 10 and 25.

Caution: Yes, of course you have to be careful not to apply any force on the glass part of the lamp. I have taken between 5 and 10 lamps apart and used the method of holding the socket with a glove firmly against a piece of wood. Then using a small screwdriver to carefully bend the socket into two parts. By doing in this way no force is applied to the glass. When the socket is divided into two parts it is an easy matter with a small sidecutter to cut the wires going to the filaments.

Happy recycling!
Different ways apply for fastening guys to a mast or to antenna elements. The common way is to drill holes in the tips. It, undoubtedly, results to easing of rigidity of towers and antennas both. At the same time it is possible to apply "sparing" method of fastening of guys.

Takes a kapron cord. From this one do loops for fastening guys, as it is shown at Figure 1. (where Dt is - diameter of a tube).

Several loops is put to the chosen place on a mast or on antenna elements and attached to these ones by usual threads. Here we do attach a binding cord as it is shown in Figure 2.

Further, using cordlike binding, we adhere loops to a tube as it is shown in Figure 3.

At the figures are designated: L - Loop for fastening, B - Beginning of binding cord, End - End of binding cord, HL - Helping Loop.

After the ending of binding we pass the end of binding cord in Helping Loop and strongly pull for the beginning of binding cord. After that do melt of the Beginning and the End the binding rope, and that is all.
In the far eightieth years of 20 century, on to one of Russian radio transmitting radio center I saw a self-made opened transmission line that fed a transmitting antenna. Struts of the line were made of oak tree. What is wonder at that? These struts were about some tens years old. They were made at the end of 40 years, during restoring of the USSR after World War-II. The struts had been thoroughly boiled in paraffin before installation. Till now these wooden struts, made in great quantity, lie in a tub filled with paraffin. At repair of transmission lines the paraffin is kindled, the insulators are got and used. The wooden struts, despite of their “antiquity”, looked rather ‘fresh’ and had sufficient mechanical and electric strength.

Figure 1 Wooden compression strut

The struts had length 12-15 centimeters, and width about 2 centimeters. Kerfs were made at a small distance from ends of the struts. Figure 1 shows the wooden strut. Wires of the ladder line were wound around of struts and kept on kerfs. Figure 2 shows the two-wire line with usage of wooden struts.
Parameters of Coaxial Cables

Chapter 12: Antenna Tools

Parameters of Coaxial Cables

<table>
<thead>
<tr>
<th>Coax no</th>
<th>Diameter, mm</th>
<th>Losses (db/100m) at frequency (MHz)</th>
<th>Price (US $) and producer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>PK 50-17-51</td>
<td>27.5</td>
<td>1.4</td>
<td>2.1</td>
</tr>
<tr>
<td>RFC LCF 7/8</td>
<td>28</td>
<td>1.16</td>
<td>1.69</td>
</tr>
<tr>
<td>NOKIA RF 7/8</td>
<td>27.5</td>
<td>1.2</td>
<td>1.8</td>
</tr>
<tr>
<td>NOKIA RF 1/2</td>
<td>16</td>
<td>2.2</td>
<td>3.2</td>
</tr>
<tr>
<td>RFC LCF 1/2</td>
<td>16</td>
<td>2.13</td>
<td>3.1</td>
</tr>
<tr>
<td>ANDREW LDF4-50A</td>
<td>16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RFC LCF 3/8</td>
<td>12.1</td>
<td>3.1</td>
<td>4.4</td>
</tr>
<tr>
<td>PK50-7-58</td>
<td>12.1</td>
<td>3.4</td>
<td>4.9</td>
</tr>
<tr>
<td>12D-SFB-NL</td>
<td>15.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10D-SFB-NL</td>
<td>13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8D-SFB-NL</td>
<td>11.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8D-SFAE</td>
<td>11.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10D-FB</td>
<td>13</td>
<td>3.2</td>
<td>4.8</td>
</tr>
<tr>
<td>8D-FB</td>
<td>11.1</td>
<td>4.3</td>
<td>7</td>
</tr>
<tr>
<td>8D-FB-L</td>
<td>11.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>POPE H 100</td>
<td>9.8</td>
<td>4.1</td>
<td>-</td>
</tr>
<tr>
<td>CUSHCRAFT TL93605</td>
<td>11.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BELDEN 9913</td>
<td>11.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SIVA RH 100</td>
<td>9.7</td>
<td>-</td>
<td>5.2</td>
</tr>
<tr>
<td>LMR-400</td>
<td>11.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5D-FB</td>
<td>7.4</td>
<td>6.5</td>
<td>9.6</td>
</tr>
<tr>
<td>RG-8/U;</td>
<td>6.0</td>
<td>-</td>
<td>9.0</td>
</tr>
<tr>
<td>RG-8A/U</td>
<td>10.3</td>
<td>-7.0</td>
<td>-10.5</td>
</tr>
<tr>
<td>PK 50-11-31</td>
<td>13</td>
<td>3.8</td>
<td>6.6</td>
</tr>
<tr>
<td>PK 50-11-11</td>
<td>13</td>
<td>4.5</td>
<td>8.5</td>
</tr>
<tr>
<td>PK 50-7-312</td>
<td>11.3</td>
<td>8.5</td>
<td>14</td>
</tr>
<tr>
<td>PK 50-7-11</td>
<td>11.3</td>
<td>8.5</td>
<td>14</td>
</tr>
<tr>
<td>PK 50-7-32</td>
<td>11.3</td>
<td>6.8</td>
<td>11.8</td>
</tr>
<tr>
<td>RG8-LRP</td>
<td>10.4</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>RG-8x</td>
<td>6.15</td>
<td>12.1</td>
<td>17.7</td>
</tr>
<tr>
<td>RG213/U, RG213BX</td>
<td>10.3</td>
<td>7</td>
<td>10.5</td>
</tr>
<tr>
<td>3D-FB</td>
<td>5.3</td>
<td>8.3</td>
<td>12</td>
</tr>
<tr>
<td>RG-58/U</td>
<td>5</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>RG-58A/U</td>
<td>5.03</td>
<td>13.1</td>
<td>18.7</td>
</tr>
<tr>
<td>RG-58C/U</td>
<td>4.95</td>
<td>16</td>
<td>23</td>
</tr>
<tr>
<td>RG-174/U, RG-174A/U</td>
<td>2.8</td>
<td>26</td>
<td>38</td>
</tr>
</tbody>
</table>

Producer:: RU- Russia; IT- Italy; GM- Germany, NL-Netherlands; US- USA; JP-Japan ; TW- Taiwan.
SUPPLEMENTARY
The hAmTX Power Supply

by Paulo Ferreira CT2ILQ
paf@dei.isep.ipp.pt

The need for a power supply

When a ham buys (or makes) a radio he usually needs a power supply for it. A cheap alternative to buy one is to adapt a computer power supply. I just said the magic word, cheap. Hams like cheap things because that way they can buy more radios, or wire for antennas, or CW keys, or any other things they like. And a computer power supply can be bought in many places of the world, where one cannot find other radio related items. But a computer power supply is very different from a radio power supply, so we need to check the differences and see what can be done.

A typical PC compatible power supply is usually a switch-mode power supply with at least one fan. So one can expect RF noise and some acoustic noise. The RF noise can be ignored if the objective is to feed a VHF/UHF FM rig, and (some) modern PC power supplies have reasonably quiet fans.

Moving Closer

There are several documents on the internet that give information about transforming one PC PSU in one radio PSU. They have several shortcomings, they are for older AT style PSUs, they usually need changes in the internal circuit of power supply, or in alternative they can supply only small currents.

But, in the recent times there is a new kind of PC power supplies called ATX12V and they are interesting, very interesting. In a simple way, old style AT PSUs had a strong +5V output, and a reasonable +12V output. The ATX standard brought different connectors and a +3.3V output. The ATX12V standard comes from the need of low voltages and strong currents for the actual processors. The motherboard manufacturers place voltage converters on the motherboard and feed the voltage converters at +12V. So its easy to find PSUs with a capacity of between 15 and 25 Ampéres on the +12V line (without circuit changes).

The trouble is not the maximum current, but the minimum current because switch-mode PSUs have a minimum current limit, if their load is lower than the minimum, they can be damaged (or they shutdown if they are protected).

But the resolution of this problem is simple, we just need to place some resistors on the outputs that have a minimum current requirement. Usually the +3.3v, +5V and +12V outputs have a minimum current requirement. The resistors must have the correct wattage, preferably with a safe margin. Some of the more recent power supplies only have a minimum current requirement on the +12V line, so they are very nice for our needs.

How to proceed

1) Get the ATX12V power supply design guide.
2) Choose the ATX power supply to buy.

Items to check:

- The PSU must have a power switch.
- The manufacturer has a page on the Internet?
- Does the page has the full specifications?
- Is the PSU a "big fan" (120 mm) type PSU?
- What are the maximum currents?
- What are the minimum currents?
- What are the outputs with a minimum current requirements?

http://www.antentop.org/ mirror: www.antentop.boom.ru

Page 1
SUPPLEMENTARY

The hAmTX Power Supply Calculations

So let's suppose we have a power supply with a minimum current of 0.5 A on the +12Volts output only. So we need a resistor of \(\frac{12}{0.5} = 24 \) Ohms maximum. A good approximation would be a 22 Ohm resistor. The power dissipated would be \(12 \times 0.5 = 6 \) Watts so a good compromise would be a 22 Ohm resistor of 15 Watt at least.

If the power supply has a minimum current on other outputs we need to calculate the resistors for the other outputs using the same method.

Opening the power supply

You may get an electrical shock even if the PSU is disconnected from the mains, so be careful, or you may not need to follow the next steps. One measure of caution that may not work, but may diminish the danger, is to leave the PSU disconnected one full day before opening it.

List of wires and colors

- **Black Wires** - Ground - connect to ground (Ground Output)

- **Green Wire** - Connect to one black (to place the power supply always on)

- **Grey** - Power Ok - unconnected

- **Purple** - +5V standby - unconnected

- **White** - -5v (not used in recent motherboards) unconnected

- **Blue** - -12V unconnected

- **Orange Wires** (+3.3v) - leave opened (no connection)

- **Red Wires** (+5v) - leave opened (no connection)

- **Yellow Wires** (+12Volts) - connect to Positive Output

Resistors to connect

As only the +12V output has a minimum current requirement we only place one load resistor (previously calculated) between the yellow and black wires. The resistor (or resistors) should be placed inside the PSU to benefit from the PSU fan.

Practical resume:

- **Black** = Ground = Connect to Black wire of the radio
- **Yellow** = 12 Volts = Connect to Red wire of the radio
- **Green** = connect to Black
- **Red** = +5V = Leave open (unconnected)
- **Orange** = +3.3V = Leave open (unconnected)
- **Yellow** = 12 Volts = Connect to Positive Output

Practical experience:

I got one power supply (460W nominal with a big 120mm fan) and modified it. Acoustically it is very quiet. Electrically with a VHF/UHF FM rig the RF noise is not detectable. So to operate a VHF rig the PSU is suitable.

One good thing about it (and many others) is an adjustable resistor inside to control the output voltage and that way I could adjust the output voltage up to 13.5 Volts instead of usual 12Volts (with a lot of care because of the deadly voltages inside of the power supply).

To test the RF noise I compared the PSU with a linear PSU, and with a Gel-Cell battery, using one hf radio on several amateur bands, and a 20 meter horizontal long wire antenna.

On the first test, inside the house, the PC modified PSU was a noisier than the linear PSU but not much worse, and the battery was comparable to the linear supply.

Then outside, I placed the radio under the antenna and yes, the "computer" PSU, is usable on VHF and UHF FM, but on HF gives a lot of noise. Surprise, the linear PSU also makes noise, and the battery is very quiet, because almost all the QRM I hear is from the coaxial cable routing from the inside to the outside of the house.

http://www.antentop.org/ mirror: www.antentop.boom.ru
SUPPLEMENTARY

The hAmTX Power Supply

It runs parallel to the satellite receiver cables and that should be the cause of all that QRM... So I need to reroute the antenna cables.

Meanwhile I have a good PSU to use with a typical 50W FM VHF/UHF radio.

Things to try in the future:

The PSU is not suitable for HF use. Could the PSU be improved with additional filters? I have not placed any filter on the output but there is space for the filter inside the PSU box if the fan is moved to the outside.

Links and documentation:

Atx12V Specification:

http://www.enhanceusa.com/documents/ATX12V_v2.01.pdf

Other specifications:

http://www.enhanceusa.com/support_tech.htm

Basic Modification Examples:

http://www.qsl.net/aa3sj/Pages/PC-Supply.html

http://www.mattsrctuff.com/PCPS.htm

St. Louis switcher

http://www2.arrl.org/members-only/tis/info/pdf/0205035.pdf

http://www.qsl.net/wj5o/project.htm

http://www.njqrp.org/qhbextra/6/6d.html

http://207.195.94.13/sart/radio_library/switcher-supply.pdf

Advanced ones:

Very complete:

http://www.qrp4u.de/docs/en/powersupply/index.htm

Nice modification

http://www.qsl.net/vk4ba/projects/index.html

ATX power supply example

Changing an ATX PSU to 12-24V input (input!):

Data sheets and tech pubs:

http://focus.ti.com/docs/prod/folders/print tl494.html

Nice Articles about switched power supply repair (on a slot machine tech magazine !!)

Modifing a PC power Supply for Lab use:

http://web2.murraystate.edu/andy.batts/ps/powersupply.htm

Final version (for now) with fan outside of the box

http://www.antentop.org/ mirror: www.antentop.boom.ru
SUPPLEMENTARY

27 and 145 MHz Communication

Hand-Held/Car/Truck/House

27 and 145 MHz Communication

<table>
<thead>
<tr>
<th>CB- 27-MHz (distance in kilometers)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>40-50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15-25</td>
<td>20-30</td>
</tr>
<tr>
<td></td>
<td>8-15</td>
<td>10-20</td>
<td>15-25</td>
</tr>
<tr>
<td></td>
<td>2.5-6</td>
<td>4-10</td>
<td>5-12</td>
</tr>
<tr>
<td></td>
<td>5-12</td>
<td>7-15</td>
<td>8-16</td>
</tr>
<tr>
<td></td>
<td>12-25</td>
<td>15-30</td>
<td>25-40</td>
</tr>
<tr>
<td></td>
<td>20-35</td>
<td>35-50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60-80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VHF- 145-MHz (distance in kilometers)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://www.antentop.bel.ru/
Page S- 4
Wire Metric Diameter/Gauge Standard

<table>
<thead>
<tr>
<th>Number #</th>
<th>0000</th>
<th>000</th>
<th>00</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter in mm</td>
<td>SWG</td>
<td>10.16</td>
<td>9.45</td>
<td>8.84</td>
<td>8.23</td>
<td>7.62</td>
<td>7.01</td>
<td>6.40</td>
<td>5.89</td>
<td>5.38</td>
<td>4.88</td>
</tr>
<tr>
<td></td>
<td>AWG</td>
<td>11.68</td>
<td>10.41</td>
<td>9.27</td>
<td>8.25</td>
<td>7.35</td>
<td>6.54</td>
<td>5.83</td>
<td>5.19</td>
<td>4.62</td>
<td>4.11</td>
</tr>
<tr>
<td></td>
<td>BWG</td>
<td>11.53</td>
<td>10.80</td>
<td>9.65</td>
<td>8.64</td>
<td>7.62</td>
<td>7.21</td>
<td>6.58</td>
<td>6.05</td>
<td>5.59</td>
<td>5.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number #</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter in mm</td>
<td>SWG</td>
<td>4.08</td>
<td>3.68</td>
<td>3.25</td>
<td>2.95</td>
<td>2.64</td>
<td>2.34</td>
<td>2.03</td>
<td>1.83</td>
<td>1.63</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td>AWG</td>
<td>3.25</td>
<td>2.90</td>
<td>2.59</td>
<td>2.30</td>
<td>2.05</td>
<td>1.83</td>
<td>1.63</td>
<td>1.45</td>
<td>1.29</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>BWG</td>
<td>4.19</td>
<td>3.76</td>
<td>3.40</td>
<td>3.05</td>
<td>2.77</td>
<td>2.41</td>
<td>2.11</td>
<td>1.83</td>
<td>1.65</td>
<td>1.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number #</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter in mm</td>
<td>SWG</td>
<td>1.02</td>
<td>0.92</td>
<td>0.81</td>
<td>0.71</td>
<td>0.61</td>
<td>0.56</td>
<td>0.51</td>
<td>0.46</td>
<td>0.41</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>AWG</td>
<td>0.91</td>
<td>0.81</td>
<td>0.72</td>
<td>0.64</td>
<td>0.57</td>
<td>0.51</td>
<td>0.45</td>
<td>0.40</td>
<td>0.36</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>BWG</td>
<td>1.07</td>
<td>0.89</td>
<td>0.81</td>
<td>0.71</td>
<td>0.64</td>
<td>0.56</td>
<td>0.51</td>
<td>0.46</td>
<td>0.41</td>
<td>0.35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number #</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter in mm</td>
<td>SWG</td>
<td>0.30</td>
<td>0.29</td>
<td>0.27</td>
<td>0.254</td>
<td>0.229</td>
<td>0.203</td>
<td>0.178</td>
<td>0.17</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>AWG</td>
<td>0.25</td>
<td>0.23</td>
<td>0.20</td>
<td>0.18</td>
<td>0.16</td>
<td>0.14</td>
<td>0.13</td>
<td>0.11</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>BWG</td>
<td>0.30</td>
<td>0.25</td>
<td>0.229</td>
<td>0.203</td>
<td>0.178</td>
<td>0.127</td>
<td>0.102</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resistor color code

As usual a resistor is marked by four or five ring strips. Since you can find out the value of the resistors at any installation of this one on a printed-circuit-board. Read value of the resistor from the end with a narrow strip in Ohms. Read a wide strip the last. Table 1 shows the decoding of the color marks for resistors. Up to multiplier marks are given in Ohms.

Table 1 Resistor color code

<table>
<thead>
<tr>
<th>Mark color</th>
<th>1 mark</th>
<th>2 mark</th>
<th>3 mark</th>
<th>Multiplier</th>
<th>Tolerance, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>silver</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10^{-2}</td>
<td>10</td>
</tr>
<tr>
<td>gold</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10^{-1}</td>
<td>5</td>
</tr>
<tr>
<td>black</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>brown</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>red</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10^{2}</td>
<td>2</td>
</tr>
<tr>
<td>orange</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>10^{3}</td>
<td>-</td>
</tr>
<tr>
<td>yellow</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>10^{4}</td>
<td>-</td>
</tr>
<tr>
<td>green</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>10^{5}</td>
<td>0,5</td>
</tr>
<tr>
<td>blue</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>10^{6}</td>
<td>0,25</td>
</tr>
<tr>
<td>violet</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>10^{7}</td>
<td>0,1</td>
</tr>
<tr>
<td>grey</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10^{8}</td>
<td>0,05</td>
</tr>
<tr>
<td>white</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>10^{9}</td>
<td>-</td>
</tr>
</tbody>
</table>

Capacitor color code

Recently capacitors as well as resistors have color marks. However different types of capacitors can have different color strips or points at the body. Figure 1 shows examples of color marks for several types of modern capacitors.

Capacity is specified by two first colors (strip or points) in pF. After that the multiplier shows value of the capacitor. Tolerance, working voltage and also can be specified if it is necessary. Table 2 shows capacitor color marks. Table 3 shows lighting calculator for capacitors.
Table 2 Capacitor color mark

<table>
<thead>
<tr>
<th>Mark color</th>
<th>1 mark</th>
<th>2 mark</th>
<th>Multiplier</th>
<th>Tolerance, %</th>
<th>Voltage, V</th>
</tr>
</thead>
<tbody>
<tr>
<td>black</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>brawn</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>6,3</td>
</tr>
<tr>
<td>red</td>
<td>2</td>
<td>2</td>
<td>10^2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>orange</td>
<td>3</td>
<td>3</td>
<td>10^3</td>
<td>0,25</td>
<td>16</td>
</tr>
<tr>
<td>yellow</td>
<td>4</td>
<td>4</td>
<td>10^4</td>
<td>0,5</td>
<td>40</td>
</tr>
<tr>
<td>green</td>
<td>4</td>
<td>5</td>
<td>10^5</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>blue</td>
<td>6</td>
<td>6</td>
<td>10^6</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>violet</td>
<td>7</td>
<td>7</td>
<td>10^7</td>
<td>+50/-20</td>
<td>50</td>
</tr>
<tr>
<td>grey</td>
<td>8</td>
<td>8</td>
<td>10^8</td>
<td>+80/-20</td>
<td>3,2</td>
</tr>
<tr>
<td>white</td>
<td>9</td>
<td>9</td>
<td>-</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>silver</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>2,5</td>
</tr>
<tr>
<td>gold</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>1,6</td>
</tr>
</tbody>
</table>

Table 3 lighting calculator for capacitors

<table>
<thead>
<tr>
<th>Value of capacity (μF)</th>
<th>1 mark</th>
<th>2 mark</th>
<th>3 mark (Multiplier)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,010</td>
<td>brawn</td>
<td>black</td>
<td>orange</td>
</tr>
<tr>
<td>0,015</td>
<td>brawn</td>
<td>green</td>
<td>orange</td>
</tr>
<tr>
<td>0,022</td>
<td>red</td>
<td>red</td>
<td>orange</td>
</tr>
<tr>
<td>0,033</td>
<td>orange</td>
<td>orange</td>
<td>orange</td>
</tr>
<tr>
<td>0,047</td>
<td>yellow</td>
<td>violet</td>
<td>orange</td>
</tr>
<tr>
<td>0,068</td>
<td>blue</td>
<td>grey</td>
<td>orange</td>
</tr>
<tr>
<td>0,10</td>
<td>brawn</td>
<td>black</td>
<td>yellow</td>
</tr>
<tr>
<td>0,15</td>
<td>brawn</td>
<td>green</td>
<td>yellow</td>
</tr>
<tr>
<td>0,22</td>
<td>red</td>
<td>red</td>
<td>yellow</td>
</tr>
<tr>
<td>0,33</td>
<td>orange</td>
<td>orange</td>
<td>yellow</td>
</tr>
<tr>
<td>0,47</td>
<td>yellow</td>
<td>violet</td>
<td>yellow</td>
</tr>
<tr>
<td>0,68</td>
<td>blue</td>
<td>grey</td>
<td>yellow</td>
</tr>
<tr>
<td>1,0</td>
<td>brown</td>
<td>black</td>
<td>green</td>
</tr>
<tr>
<td>2,2</td>
<td>red</td>
<td>red</td>
<td>green</td>
</tr>
</tbody>
</table>