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1 — EME 2016 — Chapter Il . Signal Polarity in V/UH F bands
Hello, nice to meet you again. Why Chapter 11?

2 — Background, Chapter |

We both operate on the 2 m band, and had decided to investigate Faraday and QSB
effects, so common on this band.

In the 2014 France meeting we showed you our studies on what happens in the
ionosphere to a 2 m signal.

Specifically: the type of QSB one can expect, and the polarity of the returning wave over a

full moon pass.
|
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All the polarity calculations were made with an Excel sheet we built.
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Results were checked by comparison with real decodes of the same stations lasting at
least one hour. For our research we built a big library of station pairs.

3 — Our Excel sheet

Building the sheet for each pair of stations is a lot of work, due to the amount of data
necessary. These are: Moon position during the pass, ionospheric density and thickness
for that date, the geomagnetic field above that locator.
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20| 17.30 18.34 235 T.7 417 320 453 0,20 4,06 12,98 -0,3533

214 800 13.04 241 42 432 34 434 020 377 12.84] 02686
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The sheet converts the ionospheric data for the station’s location, calculates the increase
of ion density due to obligue passage (Ka), and finds the magnetic field component in the
wave'’s direction (cosFM).

4 — Results for each station
Putting these data in Faraday’s rotation formula and adding the polar offset gives us a
table of the rotations of the up going and down going waves.

5 — Final results in 2m

Notwithstanding the choice of two relatively near stations (1000 km), so that the
ionospheric density is similar, we see that the two factors, Ka and cosFM, have an
important influence in causing different rotations (up right figure).

So, on 2 meters, the rotation varies appreciably, going up and down during the Moon pass.
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6 — Chapter

Using this library, we intend to show and expand the polarity issue for the V/UHF bands.
Polarity is the sum of Spatial Offset and Faraday rotation.

Spatial Offset is dependent only on the relative location of the stations..

Faraday is dependent on frequency, ionosphere’s density, and on Moon’s position

7 —From our library: Spatial Offsets
With a simple shift of the field chosen for the polarity graph, we easily obtain from each
Excel sheet in our library the graph of Polar Offset.

* With a simple shift: Spatial Offset between SPAMPB and PA3FPQ
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Since it is independent from frequency, our library data are valid for all bands.



8 — Spatial Offset

An easy way to calculate the angle between the planes of two antennas in different places
of the world is to calculate for each the angle respect earth’s polar axis, then make the

difference between them.

P=arctg((sinLat*cosEl-cosLat*cosAz*sinEl)/cosLat*sinAz)

Spatial Offset = P1 - P2

These angles depend on the latitude, and on Moon’s direction.
Latitude is a constant, Moon’s direction varies during the pass.

The differences between polar offsets increase with station distance so spatial offset can

become an important factor of polarity.

For example TI2SW 9000 km west of IKIUWL
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9 — Offset, change with distance and direction

From our big library we have extrapolated graphs for many stations placed in different

directions and at different distances.
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When the main difference is only in latitude, the graphs have an S shape, and offset tends
to zero with Moon in the middle of the pass.

When the difference is mainly longitude, the offset is maximum with Moon in the middle of
the pass, and does not change sign.

Offsets can reach and pass 90°. If greater, since the phase is not important, the effective
offset is the supplement of the calculated value (but the full value must be used for polarity
calculation).

10 — Conversion to other bands
In our sheets we did put in the coefficient k/f* which has a value for 2 m of 1,14.

| =11412°K5 5573 )

o - D E E G H | J K L

omin Loc. Lat. Long. |Lat. mag.| Corr. Day Corr.night F Incl. Decl. Locconv. |!

VPB KOO3HT 53,81 20,63 50,65 0,93 0,20 0,44958 68,77 4,54

it oRBS)| Az (°) El (%) h (km) Ka VTEC Drbs Corr. VTEC loc. STEC cosF Rotaz. (%)
11.04 129 8.3 187 3,64 15,52 0,45 14,24 51,84 —0,33&1 —5?2,6/
T prr AR e PP T gy oA s —r S

These are the different values for the other VHF and UHF bands:

6m —9,46; 70cm —0,127; 23cm —0,0123

Changing the coefficient in the formula transforms the sheet to what would happen if the
two stations were operating on this different band. Our library can be easily transformed to
show what would happen on different bands for the same pair and in the same conditions.

11 — 4 bands (6m, 2m, 70 cm, 23 cm)
Using the same pair, SPAMPB by PA3FPQ, we show you the superimposed graphs of
polarity rotation when operating on these four bands.
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Rotation due to Faraday is enormous on the lower band, and gradually becomes smaller
with decreasing frequency. There is a factor 9 for each jump.

These graphs use Faraday calculated for an unperturbed ionosphere.

Lets see in more detail what happens on each band.

12 — VHF bands, unperturbed ionosphere

In VHF, polarity is determined mainly by Faraday rotation, which is much bigger than
spatial offset.

Faraday rotation is obtained multiplying a frequency dependent coefficient, the
geomagnetic field component in the wave’s direction, and the ionosphere’s electron
content encountered. In order of importance, parameters influencing Faraday, for an
unperturbed ionosphere, are:

-- the angle between the Geomagnetic field and Moon’s direction which can vary from very
small values to almost 90°

-- the obliquity coefficient which measures the increase of length of the passage through
the ionosphere, function of moon’s elevation

-- the electron density of the ionosphere

13 — VHF bands, turbulent ionosphere

Superimposed on the average evolution of Faraday rotation during a Moon pass, there can
be a more quicker fluctuation due to the effect of ionospheric winds.

Winds cause undulations and waves (TIDs), so free electron density varies in space and
time, causing rotation fluctuations.
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Australian scientist of the University of Sydney , Cleo Loi, has made the very interesting
discovery of plasma tubes in Earth's magnetosphere. These structures are important
because they cause signal distortions that could affect trans-ionospheric communication.




The plasma interacts with the earth's magnetic field, creating field-aligned ducts of plasma.
These structures of plasma are at about 600 km above the Earth's surface, in the upper
ionosphere.

14,15 — 50 MHz band

Typical sky noise temperature is 3600 °K (very high).

On this band Faraday rotates with high speed many thousands of degrees over a Moon
pass. So there is a quick shift between horizontal and vertical polarization.

Spatial offset is absolutely irrelevant.
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16 — Effect of rotation speed on a JT65 gso

JT65 alternates 1’ periods of transmission and reception.

We are considering a case in which the received signal, when polarity is optimum, is 3 dB
above the minimum decoding limit.

3 dB is the attenuation when the polarity is +-60°.

So, during the time that polarity is between 60° and -60°, decodes are possible.

Beyond -60° through 90° till the successive 60°, there are no decodes.

Part of the favourable period is occupied by transmission, so the number of consecutive
periods favourable for decodes decreases to half.
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In this graph we show the effect of rotation speed for three typical cases.

A JT65 gso takes 5-6 minutes overall if decodes happen consecutively, rare case.
On this band this condition is very rare, so a qso can take a much longer time.

17 — 144 MHz band

Typical sky noise temperature is 300 °K (moderate).
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- Faraday rotates hundreds of degrees, so overrides spatial offset
also when it is big due to distance.

» V-H-V transitions with typically a 30 to 60 minute period.

On this band there are typically overall rotations of hundreds of degrees, so spatial offset
can influence the time when polarity is favourable, but is overridden by Faraday, both for
near and for distant stations.

Speed of rotation change is much lower, of the order of 90°/30’, so during a Moon pass,
there are tens of favourable periods followed by tens of unfavourable periods.

On this band cross yagis are possible, and it is a trend to overcome Faraday.




18 — UHF bands

In the UHF bands the dominant factor becomes spatial offset, which can reach and pass
half turn, in which case the supplement counts since phase does not count .
So distance between stations has the biggest influence.

19 — 432 MHz band

Typical sky noise temperature is 85 °K (low).
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Here Faraday rotation is of the order of tens of degrees, often smaller than spatial offset.

For distant stations the length of unfavourable periods is big, so it would be very useful
having some way to control rx polarization, such as crossed yagis (not easy to build).

V-H-V transitions are few and far apart..
Cross pol. or circular pol. Is possible when moving to parabolic dishes. This is the obvious

trend on this band, when sizable dishes are possible.

20 — 1296 MHz band

Typical sky noise temperature is 68 °K (very low).
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On this band Faraday is practically non existent, so spatial offset becomes the dominant

factor.

Fortunately, on this band dishes predominate on yagis, and so circular pol., which is the
best solution for these problems, is achievable.

21 — VHF/UHF bands overview

VHF bands are dominated by Faraday, UHF bands are dominated by Spatial Offset
Going from 6 m to 23 cm, polarity changes with decreasing speed.

From peaks of the order of 1200°/h on 6m (because of Faraday), we tend towards 10°-
20°/h on 23 cm (due to Spatial Offset).

10




So when single polarity of the receiving antenna is in use, favorable and unfavorable
periods increase in length and decrease in number.

Our Excel sheet has allowed us to get some nhumbers and orders of magnitude of
characteristics, known in practice, of these bands.
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